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model for polyacene crystals [1]. We show error propagation to A s 7 0 1{1.0
harmonic and anharmonic vibrational density of states (VDOS), Figure 3: Panel a): Integrand for the classical thermodynamic integration step.
Further panels: Integrands of steps to include nuclear quantum effects on b) the full —1 10.8

quantifying peak-position uncertainty.

® classical

system; c) ice with a molecular vacancy; d) a single water molecule. With a MLIP
trained on the optB88 functional, AFj,ssical = 277 =7 meV and AFgqm = 293 4+ 10
meV.
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e Q state. To reach this goal’ we combine varying electric field intensities. Nuclear quantum effects induce a more pronounced
) n » Transition tube sampling [2] to chea p|y generate such polarization at high electric fields (left panel). The intramolecular O-H bond
g truct d elongates, and the intermolecular O-O distance reduces at increasing fields (right
SLIUCEUrES an panel). Quantum simulations show an enhancement of these effects at higher field
« Active Iearning via query by committee [3] to select the intensities. The molecular self-diffusion (green curve) drops substantially, showing the
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Fisure 1: Top: Sketch showing the active-learning scheme used to create genera and thermal rates of water splitting on Pd(111) using path- = /2 ci= o fo @ fie = leoaeiie Dleioa
MLIP for naphthalene, anthracene, tetracene and pentacene crystals. Bottom: integral umbrella sampling (Fig_ 4) shedding light on the crucial
Anharmonic VDOS of naphthalene crystal at 80 K, calculated from molecular ' lLed bv Zekun Lou Bv “densitv-fittineg” the electronic densit
dynamics using the committee model. The red shaded region represents the role of nuclear quantum effects and the hydrogen—bond network fy | d d . yd. y & h | hy
propagated uncertainty on different frequency ranges of the VDOS. Around 600 cm™1 in the neighborhood of the reaction site. Ne O 'S_O ate a_n_ perioaic _SySteer one can machine- e_am the
and in the 900-1000cm ™" range (carbon rings deformation modes), the uncertainty expansion coefficients ¢y with symmetry-adapted Gaussian pro-
indicates variability in predicted peak positions. Liquid water/Pd(111) | __ Water monomer | cess regression [0, 7], based on equivariant similarity kernels K):
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Led by Paolo Lazzaroni  Polarization-Oriented _(PO) Raman ol from density learning on small bilayer 2D materials to the pre-
spectroscopy is a powerful tool to probe the evolution of phonon W diction of derived properties of small-angle, large twisted bilayer

symmetry with temperature. Relying on the MLIPs for polyace-
ces and different strategies to compute and predict polarizabil-
ity tensors, we simulate PO-Raman spectra of large unit cells
at different temperatures. The temperature-dependence of the

intensity at different angles is sensitive to vibrational coupling.
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systems.
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structure derived from electronic density prediction, matching full SCF results.
s (split OH distance) [A]

Figure 4: Surface-mediated water splitting on Pd(111). Left: A snapshot of the Led by Mariana Rossi FO”OWIng the same denSIty_flttmg

simulated system consisting of a Pd(111) slab in contact with liquid water under ansatz for the electronic density response to homogeneous elec-
periodic boundary conditions. The split water molecule is highlighted in green. Top tric fields. we proposed 3 fully equivariant kernel to predict the
right: Free energy as a function of the distance of the split O—H bond obtained from . :

classical and path-integral umbrella sampling simulations of a single water molecule vector field of the den5|ty response [8]

on a Pd surface. Bottom right: The same as above, just for the full liquid slab. . . . :
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Figure 2: Temperature dependence of the PO-Raman spectrum of anthracene in the Led by Elia Stocco  Simulations with external static or time- |
intermolecular motion range of 10 to 160 cm ™!, obtained with a combination of dependent electric fields require the knoW|edge of response ten- 10*

machine-learning potentials for the dynamics and Raman tensor weighted [-VDOS for 103

the polarizabilities. The intensity is normalized to the maximum intensity at 100 K.

sors. For this purpose, we developed a MACE [4] model to 10

predict the multi-valued dipole p in periodic systems, able to Figure 8: Isotropic polarizability ag of gold nanoparticles of increasing size, derived
from density-response predictions, trained on density-functional perturbation theory.

Long-range (LODE) descriptors are essential to capture the scaling law of g with size.

capture the correct behavior even far from equilibrium condi-
tions [5]:

Quantification of H-bond Strengths
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