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Advancing Interatomic PotentialsAdvancing Interatomic Potentials

Reliable Vibrational PropertiesReliable Vibrational Properties
Led by Shubham Sharma & Burak Gurlek Accurately model-
ing vibrational dynamics of molecular crystals is challenging due
to the importance of anharmonic contributions. Reliability of
vibrational properties derived from machine-learning potentials
(MLIPs) is only quantifiable through error propagation. We pro-
pose an active-learning strategy to train a general committee
model for polyacene crystals [1]. We show error propagation to
harmonic and anharmonic vibrational density of states (VDOS),
quantifying peak-position uncertainty.

50 100
0

1

V
D

O
S

(a
.u

.)

Mean
Comm. Err.

600 630 920 950 980 1200 1260
Wavenumber (cm−1)

Figure 1: Top: Sketch showing the active-learning scheme used to create general
MLIP for naphthalene, anthracene, tetracene and pentacene crystals. Bottom:
Anharmonic VDOS of naphthalene crystal at 80 K, calculated from molecular
dynamics using the committee model. The red shaded region represents the
propagated uncertainty on different frequency ranges of the VDOS. Around 600 cm−1

and in the 900–1000 cm−1 range (carbon rings deformation modes), the uncertainty
indicates variability in predicted peak positions.

Polarization-Oriented Vibrational RamanPolarization-Oriented Vibrational Raman

Led by Paolo Lazzaroni Polarization-Oriented (PO) Raman
spectroscopy is a powerful tool to probe the evolution of phonon
symmetry with temperature. Relying on the MLIPs for polyace-
ces and different strategies to compute and predict polarizabil-
ity tensors, we simulate PO-Raman spectra of large unit cells
at different temperatures. The temperature-dependence of the
intensity at different angles is sensitive to vibrational coupling.
With α(θ) := ei ·α · es,
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Figure 2: Temperature dependence of the PO-Raman spectrum of anthracene in the
intermolecular motion range of 10 to 160 cm−1, obtained with a combination of
machine-learning potentials for the dynamics and Raman tensor weighted Γ-VDOS for
the polarizabilities. The intensity is normalized to the maximum intensity at 100 K.

Quantification of H-bond StrengthsQuantification of H-bond Strengths

Led by Alexandre Reily Rocha Taking advantage of MLIPs
trained on several different exchange-correlation density func-
tionals, rigorous convergence of thermodynamic-integration
paths can be achieved. We probe the strength of hydrogen
bonds in crystals at different temperatures and pressures. We
take Ice Ih as an example and a path with three steps. The
hydrogen bond between a water molecule and the ice matrix
is switched on, in between the switching on/off of a harmonic
potential restraint on the molecule:

V = λ1Vice + (1− λ1) (Vice+defect + VH2O) + λ2Uharm

Nuclear quantum effects require additional thermodynamic in-
tegration steps based on path integral molecular dynamics.
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Figure 3: Panel a): Integrand for the classical thermodynamic integration step.
Further panels: Integrands of steps to include nuclear quantum effects on b) the full
system; c) ice with a molecular vacancy; d) a single water molecule. With a MLIP
trained on the optB88 functional, ∆Fclassical = 277± 7 meV and ∆FQM = 293± 10
meV.

Reliable Chemical ReactionsReliable Chemical Reactions
Led by Krystof Brezina Obtaining MLIPs for chemical reac-
tions is challenging because of the need for an expensive sam-
pling of thermally inaccessible structures around the transition
state. To reach this goal, we combine

• Transition tube sampling [2] to cheaply generate such
structures and

• Active learning via query by committee [3] to select the
most relevant ones.

This methodology allows us to quantify the free-energy profiles
and thermal rates of water splitting on Pd(111) using path-
integral umbrella sampling (Fig. 4), shedding light on the crucial
role of nuclear quantum effects and the hydrogen-bond network
in the neighborhood of the reaction site.
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Figure 4: Surface-mediated water splitting on Pd(111). Left: A snapshot of the
simulated system consisting of a Pd(111) slab in contact with liquid water under
periodic boundary conditions. The split water molecule is highlighted in green. Top
right: Free energy as a function of the distance of the split O–H bond obtained from
classical and path-integral umbrella sampling simulations of a single water molecule
on a Pd surface. Bottom right: The same as above, just for the full liquid slab.

New Electronic-Structure ModelsNew Electronic-Structure Models

Multi-Valued Dipolar ModelsMulti-Valued Dipolar Models
Led by Elia Stocco Simulations with external static or time-
dependent electric fields require the knowledge of response ten-
sors. For this purpose, we developed a MACE [4] model to
predict the multi-valued dipole µ in periodic systems, able to
capture the correct behavior even far from equilibrium condi-
tions [5]:
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Figure 5: Predicted
dipoles from single- and
multi-valued models
along a trajectory where
an atom is displaced to a
periodic replica. The
DFT reference (green) is
shown for different
branches. The
multi-valued model
matches DFT, while the
single-valued model fails
for structures far from
equilibrium.

Multi-Valued Dipolar Models (cont.)Multi-Valued Dipolar Models (cont.)

Simulations with Applied Electric-FieldsSimulations with Applied Electric-Fields

By defining H = H0 + µ · E , we can combine ML models to
run classical and path-integral molecular dynamics at varying
electric field intensities [5].

Figure 6: Comparison between classical and quantum results in liquid water at
varying electric field intensities. Nuclear quantum effects induce a more pronounced
polarization at high electric fields (left panel). The intramolecular O–H bond
elongates, and the intermolecular O–O distance reduces at increasing fields (right
panel). Quantum simulations show an enhancement of these effects at higher field
intensities. The molecular self-diffusion (green curve) drops substantially, showing the
onset of electrofreezing.

Models for the Electronic DensityModels for the Electronic Density
Led by Zekun Lou By “density-fitting” the electronic density
ne of isolated and periodic systems, one can machine-learn the
expansion coefficients cλ with symmetry-adapted Gaussian pro-
cess regression [6, 7], based on equivariant similarity kernels Kλ:

cλ = wT
λKλ.

Numerical improvements of this model enable extrapolation
from density learning on small bilayer 2D materials to the pre-
diction of derived properties of small-angle, large twisted bilayer
systems.
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Figure 7: Left: Twisted bilayer graphene at θ = 1.89◦, 3676 atoms. Right: band
structure derived from electronic density prediction, matching full SCF results.

Led by Mariana Rossi Following the same density-fitting
ansatz for the electronic density response to homogeneous elec-
tric fields, we proposed a fully equivariant kernel to predict the
vector field of the density response [8].
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Figure 8: Isotropic polarizability α0 of gold nanoparticles of increasing size, derived
from density-response predictions, trained on density-functional perturbation theory.
Long-range (LODE) descriptors are essential to capture the scaling law of α0 with size.

OutlookOutlook
• ML for reactions at electrified interfaces
• ML for non-equilibrium quantum dynamics
• General and autodifferentiable models for the density
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