Max-Planck-Institut für Struktur und Dynamik der Materie

Max Planck Institute for the Structure and Dynamics of Matter

Floquet twistronics in 2D materials M. Sentef-2

Title of PhD Project	Floquet twistronics in 2D materials
Туре	Theory - Areas of research: Condensed Matter Physics
Supervisor(s)	Dr. Michael Sentef
Affiliation(s):	Max Planck Institute for the Structure and Dynamics of Matter
Number of positions:	1
Abstract:	Twisted bilayers of 2D materials have recently received considerable
	attention [1] because of the opportunity to tune interesting correlated
	phases of matter, such as superconductivity and correlated insulating
	states as well as magnetism. On the other hand, Floquet-type light-
	induced states have been demonstrated in 2D materials as well, such
	as the light-induced anomalous Hall effect [2,3]. This project aims at
	building upon recent efforts to understand the combination of
	Floquet-enginering (photon-dressed band structures) and twisted 2D
	materials, as demonstrated in our proposal to induce topology in
	twisted bilayer graphene by appropriate laser driving [4]. In particular,
	a real-time as well as real-space code will be developed based on Non-
	Equilibrium Green Functions (NEGF) and Lindblad Master equations
	for driven-dissipative systems to model ultrafast transport in such
	twisted heterostructures. The goal of the project is to predict light-
	induced states that can be measured in ultrafast transport as well as
	pump-probe experiments, and to visualize light-induced topological
	edge states that can be measured by ultrafast imaging.
	[1] Y. Cao et al., Nature 556, 43 (2018)
	[2] J. McIver et al., arXiv:1811.03522
	[3] S. Sato et al., Phys. Rev. B 99, 214302 (2019)
	[4] G. Topp et al., arXiv:1906.12135
Contact person for	Michael Sentef: michael.sentef@mpsd.mpg.de
scientific questions	
about the project:	

