MPSD Seminar

18951 1559824357

Theoretical study on solid-state high harmonic generation: from a one-dimensional model to an ab-initio three-dimensional approach

High harmonic generation (HHG) from crystalline solids has become a playground in ultrafast phenomena. In contrast to noble gases, crystalline solids have rich physical properties, e.g. anharmonic energy dispersion, anisotropy depending on crystalline axis, strong electron-hole correlation, and so on. While the three-step model for HHG and its generalizations are successfully applicable to several situations, a deviation from the theoretical prediction is one of the most interesting physics in this field. To understand such deviations in solid-state HHG experiments, we need to go beyond the three-step model or along different directions. I will mainly talk about our recent trials to understand solid-state HHG, electron-hole attraction inclusion based on Hartree-Fock theory for 1D model crystal, and an ab-initio approach based on density-functional theory for 3D bulk solid comparing with experiments. [mehr]

MPSD Seminar

18967 1560253118

Electronic and Vibrational Properties of Colloidal Nanocrystals

Colloidal nanocrystals (CNCs) are nanometer sized crystals grown in solution. Due to their size-tunable optical properties, CNCs have emerged as a novel material platform for numerous applications such as displays, photovoltaics, and biological tagging. However, the colloidal growth process results in an unavoidable distribution of CNC size that inhomogeneously broadens optical absorption/luminescence lineshapes. 2-D spectroscopy is a technique capable of circumventing inhomogeneous broadening by correlating absorption and emission dynamics. In this talk I will present our results from applying 2-D spectroscopy to CNCs at cryogenic temperatures. I will first discuss our experiments on conventional CdSe CNCs, in which we have simultaneously observed both bulk-like acoustic phonons and acoustic vibrations discretized by the nanocrystal geometry for the first time. Next, I discuss our experiments on perovskite CNCs, which are a new class of materials first synthesized in 2015. We demonstrate that coherences due to vibrational coupling exhibit anomalous dephasing dynamics, which we attribute to a cascaded coherence transfer process. Finally, I discuss our observations of coherences between so-called bright-triplet exciton states, which are robust at high temperatures and polarization-selective. [mehr]

MPSD Seminar

18952 1559824853

Correlated driven-dissipative systems

Driven-dissipative systems represent natural platforms to study non-equilibrium phases. In the first part of the talk, I will present some physical results for which both non-equilibrium conditions and interactions are crucial. I will argue that a prototype model of correlated driven-dissipative lattice bosons, relevant for upcoming generation of circuit QED arrays experiments, exhibits a phase transition where a finite frequency mode becomes unstable, as an effect of quantum interactions and non-equilibrium conditions. In the broken-symmetry phase the corresponding macroscopic order parameter becomes non-stationary and oscillates in time without damping, thus breaking continuous time-translational symmetry. To get some more insights on this transition, I studied the spectral properties of Markovian driven-dissipative quantum systems using a Lehmann representation. Focusing on the nonlinear quantum Van der Pol oscillator as a paradigmatic example, I showed that a sign constraint of spectral functions, which is mathematically exact for closed systems, gets relaxed for open systems; it is eventually replaced by an interplay between dissipation and interactions. In the last part of the talk, I will finally discuss a new method to solve quantum impurity models, small interacting quantum systems coupled to a non-Markovian environment, in presence of additional Markovian dissipation. I will derive a Dyson equation for the time-evolution operator of the reduced density matrix and approximate its self-energy resuming only non-crossing diagrams. I will test this approach on a simple problem of a fermionic impurity. [mehr]

MPSD Seminar

18927 1559648179

Tuning quantum materials out of equilibrium: A FIB-microstructuring approach

“Quantum materials” loosely defines a broad collection of materials whose ground states are defined by unusual quantum properties. This research largely focuses on macroscopic single crystals, yet naturally interesting quantum phenomena lie beyond their equilibrium state. My group works towards reducing the sample size onto the sub-mm length scale, following the general idea that small samples can be driven more strongly and react faster than on the macro scale. Our main tool is Focused Ion Beam machining capable of cutting single crystals into high quality quantum devices. I will present two concrete research projects showcasing how new quantum states out of equilibrium can be accessed and investigated in FIB-prepared microcrystal structures. The first concerns the heavy fermion superconductor, CeIrIn5 (Tc~400mK). When a mm-sized structure is firmly coupled to a mm-sized substrate of different thermal expansion, the microstructure is under significant strain at low temperatures. By precisely controlling its shape, the emergent strain field can be controlled. The key difference to other approaches, such as uniaxial strain, is that complex, yet well-controlled, spatially varying strain fields can be achieved. In collaboration with Katja Nowack (Cornell), we have experimentally mapped out the resulting superconducting landscape in the devices using scanning-SQUID microscopy, and show that this spatial modulation can be well captured by finite element simulations. [1] Second, I will present our ongoing efforts to experimentally identify pseudo-magnetic fields in 3D Dirac semi-metals [2,3]. Owing to their Dirac dispersion, deformation of the crystal structure does not open a gap at the nodes, but shifts the location of the nodes in k-space and hence playing the role of a “pseudo-magnetic field”, B5. I will show how microstructuring gives us unprecedented control of such a process, and discuss how future. [mehr]

MPSD Seminar

18880 1559038731

Electrical control of quantum spins

Magnetic fields are challenging to localise to short length scales because their sources are electrical currents. Conversely, electric fields can be applied using electrostatic gates on scales limited only by lithography. This has important consequences for the design of spin-based information technologies: while the Zeeman interaction with a magnetic field provides a convenient tool for manipulating spins, it is difficult to achieve local control of individual spins on the length scale anticipated for useful quantum technologies. This motivates the study of electric field control of spin Hamiltonians [1]. Mn2+ defects in ZnO exhibit extremely long spin coherence times and a small axial zero-field splitting. Their environment is inversion-symmetry-broken, and the zero-field splitting shows a linear dependence on an externally-applied electric field. This control over the spin Hamiltonian offers a route to controlling the phase of superpositions of spin states using d.c. electric field pulses, and to driving spin transitions using microwave electric fields [2]. Experiments on Mn defects in ZnO provide insights into how to achieve manipulation of individual spins on surfaces using a scanning tunnelling microscope. A high-frequency voltage applied to the tip can drive electron spin resonance in Fe atoms on MgO surfaces via modulation of the crystal field experienced by the Fe atom [3]. It has been proposed theoretically that frustrated exchange-coupled molecular clusters might offer sensitivity to externally-applied electric fields [4]. Experiments on an antiferromagnetically-coupled Cu3 compound reveal a small linear electric field effect. A comparable sensitivity is exhibited by the heterometallic S = 1 antiferromagnetic ring Cr7Mn, but no effect is found for the S = 1/2 Cr7Ni [5]. [mehr]

MPSD Seminar

18727 1558002303

Fractional Excitonic Insulator

We argue that a correlated fluid of electrons and holes can exhibit a fractional quantum Hall effect at zero magnetic field analogous to the Laughlin state at filling 1/m. We introduce a variant of the Laughlin wavefunction for electrons and holes and show that for m=1 it describes a Chern insulator that is the exact ground state of a free fermion model with p_x + i p_y excitonic pairing. [mehr]

Reimar Lüst Lecture

17974 1556545060

Reimar Lüst Lecture -Prof. Charles Kane: Symmetry, topology and electronic phases of matter

Symmetry and topology are two of the conceptual pillars that underlie our understanding of matter. While both ideas are old, over the past several years a new appreciation of their interplay has led to dramatic progress in our understanding of topological electronic phases. A paradigm that has emerged is that insulating electronic states with an energy gap fall into distinct topological classes. [mehr]

MPSD Seminar

18814 1558428743

Unconventional Charge Density Wave Transitions

Historically charge density waves have been associated with the notions of Fermi surface nesting and, at the transition temperature, a soft phonon mode. In this talk, I will present two cases that defy this common theme. First, I will show that TiSe2 undergoes a transition due to exciton condensation, which exhibits a soft mode of a different, electronic variety. Second, when driving the system away from equilibrium, the phase transition is mediated by topological defects. These defects allow for the formation of a charge density wave that does not occur in equilibrium. This light-induced charge density wave shows some unique properties that suggest that it is not just a trivial extension of an equilibrium one. [mehr]

MPSD Seminar

18710 1558002578

Engineering with vacuum fields

When a collection of electronic excitations are strongly coupled to a single mode cavity, mixed light-matter excitations called polaritons are created. The situation is especiallyinteresting when the strength of the light-matter coupling Ωr is such that the coupling energy becomes close to the one of the bare matter resonance ω0. For this value of parameters, the system enters the so-called ultra-strong coupling regime, in which a number of very interesting physical effects were predicted. Using metamaterial coupled to two-dimensional electron gases[1], we have demonstrated that a ratio Ωr/ω0 close to[2] or above unity can be reached. [mehr]

MPSD Seminar

18709 1558002599

Ab initio few-mode theories for quantum potential scattering problems

The concept of a single mode of the electromagnetic field interacting with matter has been a paradigm in the field of light-matter interactions. For example, the single mode Jaynes-Cummings model and its many generalizations have been indispensable tools in studying the quantum dynamics of various systems. In particular in cavity and circuit QED, where strong light-matter coupling is routinely achieved in experiment, such models have been tremendously successful [1]. [mehr]

MPSD Seminar

18197 1554453272

Shedding New Light on Dirac Materials with Nonlinear Optics

Nonlinear optics has recently emerged as an attractive approach for both probing topological properties and driving Dirac materials into new states. Here, I will describe our use of ultrafast nonlinear optics to study three representative Dirac materials: graphene micro-ribbons, topological insulators, and Weyl semimetals. [mehr]

MPSD Seminar

18171 1553782985

Quantum enhanced super-resolution microscopy

Although the principles of quantum optics have yielded multiple ideas to surpass the classical limitations in optical microscopy, their application in life science imaging has remained extremely challenging. In this talk, I will present two works that apply measurements of photon correlations for the benefit of localization microscopy and image scanning microscopy (ISM). The first uses photon antibunching measurement to estimate the number of emitters in a fluctuating scene and can potentially speed-up super-resolution techniques based on localization microscopy [1]. In the second work, we employ photon antibunching as the imaging contrast itself. Measuring the spatial distribution of ‘missing’ photon pairs in an ISM architecture may enhance lateral resolution four time beyond the diffraction limit [2]. The robustness of the antibunching signal enabled super-resolved imaging of fixed cells, relying solely on a quantum contrast. [mehr]

MPSD Seminar

18182 1553856301

Many-body dynamics in pump and probe experiments: From light amplification to terahertz STM

I will discuss new theoretical approaches for analyzing pump and probe experiments in solid state systems. The focus will be on combining theoretical techniques from condensed matter physics and quantum optics. Several examples will be discussed, including light amplification in photo-excited superconductors and insulators, ultrafast molecular dynamics in terahertz-STM experiments. [mehr]

MPSD Seminar

18169 1553782920

Non-equilibrium control of the effective free energy landscape in a frustrated magnet

Geometrically frustrated magnets often possess accidentally degenerate ground states at zero temperature. At low temperature, thermal fluctuations lift the accidental degeneracy and tend to stabilize ground states with maximal entropy. This phenomenon, known as “order by disorder”, underlines the fluctuation contribution to the free energy landscape in frustrated magnets.In this talk, I show that one can control such free energy landscape in a non-equilibrium setting. In a frustrated magnet with precessional dynamics, the system’s slow drift motion within the degenerate ground state manifold is governed by the fast modes out of the manifold. Exciting these fast modes generates a tuneable effective free energy landscape with minima located at thermodynamically unstable portions of the ground state manifold. I demonstrate this phenomenon on pyrochlore XY antiferromagnet, where a magnetic field pulse is sufficient for controlling the effective free energy landscape at nonequilibrium. [mehr]

MPSD Seminar

17985 1553598600

Ab-initio description for propagation of extreme light pulse in solids: recent progresses

When we theoretically investigate interaction of an intense and ultrashort laser pulse with solids, there are two aspects that should be considered: the strong electric field of the light pulse induces nonlinear electron dynamics in solids, and the nonlinear polarization that arises from the electron dynamics affects the propagation of the light pulse. [mehr]

MPSD Seminar

17971 1553598659

Coherent states of light and ordered states of matter in cavity QED

Collective phenomena originating from interactions between light and matter have become a major focus of interest spanning different fields of research. [mehr]

MPSD Seminar

18035 1552472824

Cooperative valence dynamics in Anderson Lattices observed by resonant inelastic x-ray scattering

In rare earth intermetallics with weakly bound f-electrons and a Kondo energy scale much larger than magnetic exchange interactions or crystal field splittings, the screening of local moments may result in a non-magnetic Fermi liquid ground state [1]. At low temperatures, the quantum fluctuations between magnetic and non-magnetic valence configurations can then acquire a cooperative (lattice) character. On a phenomenological basis, a sound understanding of this Anderson Lattice phenomenon has been achieved. On the other hand, the microscopic description of the coherent coupling between Kondo-screened sites remains an outstanding theoretical challenge [2]. In experiment, the cooperative character of Anderson Lattices has only recently become directly accessible. Momentum-resolved spectroscopies, such as angle-resolved photoemission and inelastic neutron scattering, reveal the emergence of characteristic low-energy quasiparticle dynamics at low temperatures [3]. These methods probe single-particle excitations in the charge and magnetic channels, respectively. By contrast, high-resolution resonant inelastic x-ray scattering (RIXS) experiments couple to both charge and spin degrees of freedom in a non-trivial way and thus provide a more subtle point of view. If calculations of the underlying Kramers-Heisenberg term on a basis of strongly correlated f-electronic bands are achieved, RIXS may unlock unprecedented microscopic insights into the entanglement of local and itinerant charge and magnetic degrees of freedom. This would address a fundamental mechanism of quantum matter, with relevance far beyond lanthanides and actinides. I will review previous spectroscopic investigations of intermediate valence materials, present our recent RIXS results on the archetypal Anderson Lattice compound CePd3, and highlight some ideas for future x-ray scattering studies at 3rd and 4th generation light sources. [mehr]

MPSD Seminar

18034 1552472212

Single-shot optical probing of laser-generated plasmas

Lasers have captured scientific interest since their inception and increase in the on-target intensity has resulted in powerful petawatt (≈1015W) laser systems across the globe [1]. Such a laser gives the possibility to study and optimize processes such as electron [2] or ion [3] acceleration resulting from interaction of extreme electric fields (E ≥ 0.5 TV/m) with matter 0. In this talk, I would outline the current efforts of POLARIS (a Petawatt laser system) in Jena to study the effects of such laser-plasma interaction. A single-shot all optical probing was performed with Aluminum targets to fully characterize the plasma evolution. The basic motivation of the work, the experimental setup used and some results would be presented in the talk. [mehr]

MPSD Seminar

17647 1549554641

Manipulating quantum materials with cavity fields

We investigate ground state properties of electronic materials strongly coupled to cavity fields. In a two-dimensional electron gas, we explore electron paring mediated by vacuum fluctuations of the transverse electromagnetic field. To date, these interactions have only been discussed in free space, where their impact is restricted to extremely low temperatures. We argue that the sub-wavelength confinement of the light field in nanoplasmonic cavities can enhance the induced interaction to an experimentally accessible regime. In a one-dimensional Hubbard model, the cavity further enhances magnetic couplings at half-filling, and introduces next-nearest-neighbor hopping. References: F. Schlawin, A. Cavalleri, and D. Jaksch, arXiv:1804.07142. M. Kiffner, J. Coulthard, F. Schlawin, A. Ardavan and D. Jaksch, arXiv: 1806.06752. [mehr]

MPSD Seminar

17608 1549376870

Nonequilibrium dynamics in strongly correlated systems: spin-charge coupling in a photodoped Mott insulator and possible induced superconductivity

Nonequilibrium pump-probe time-domain spectroscopy opens new perspectives in studying the dynamical properties of the strongly correlated electron systems. In particular, the interplay between different degrees of freedom in strongly correlated materials can be studied by their temporal evolution [1] and also the optical switching to some novel phases is possible [2]. [mehr]

MPSD Seminar

17490 1548337981

Strain, lattice distortions and the metal-insulator transition in correlated electron materials

Correlation-driven metal-insulator transitions are typically coupled strongly both to local (octahedral distortion) and long wavelength (strain) lattice distortions. I present a theory of the intertwined electronic and lattice transitions in correlated materials, and show how it accounts for phenomena ranging from the interplay between nematic and magnetic ordering in pnictide superconductors, to the strain and current dependence of the metal insulator transitions in Ca2RuO4 and Ca3Ru2O7 and superlattice effects in the rare earth nickelates. [mehr]

MPSD Seminar

17056 1545215883

Probing Topological Matter by «Heating»: From Quantized Circular Dichroism to Tensor Monopoles

The intimate connection between topology and quantum physics has been widely explored in high-energy and solid-state physics, revealing a plethora of remarkable physical phenomena over the years. Building on their universal nature, topological properties are currently studied in an even broader context, ranging from ultracold atomic gases to photonics, where distinct observables and probes offer a novel view on topological quantum matter. [mehr]

MPSD Seminar

16937 1544611408

Charge density wave (CDW) order in monolayer TMDs

Charge density wave (CDW) ordering and the mechanism for it remains a live issue, particularly in transition-metal dichalcogenide (TMD) systems. These are attractive because of both the variety of material properties they are known to host, and their conveniently layered van der Waals structures. The evolution of properties and interactions of these materials when thinned to a monolayer limit remains an area for exploration. In this talk, I present some background on the study of CDW order in bulk and monolayer TMDs. I then discuss some recent results, as well as my own upcoming investigations of TiTe2, utilising molecular beam epitaxy (MBE) growth and photon energy-dependent angle resolved photoemission spectroscopy (ARPES). [mehr]

MPSD Seminar

16995 1544449761

Probing (and Changing) the Mechanical Properties of Cell Membranes

Cell membranes are formed of lipid bilayers, and separate the interiors of all living cells from the surroundings. They have an integral role in maintaining the internal environment of cells. Anaesthetics have been shown to have a potency directly proportional to their affinity for lipid substances, strongly implying that the effect of anaesthesia is due to the action on cell membranes of the anaesthetic molecules. Previous studies have demonstrated the effects of anaesthetics on lipid melting points, but no experiments have looked at changes in mechanical properties. [mehr]

MPSD Seminar

16884 1543579363

A time domain perspective on electron-boson coupling in superconducting materials

Experiments in the time domain allow to determine the electron-boson coupling strength by analyzing the second moment of the Eliashberg function α2∙F(ω) using the relaxation time constant of thermalized, hot electrons after optical excitation. [1] While this approach works well for conventional superconducting materials, it is under discussion for unconventional superconductors due to competing electron and boson dynamics on similar time scales. [2,3] [mehr]

MPSD Seminar

16936 1543930707

New Methods of Measuring Material Structure Using X-Ray Diffraction Data

In this talk I will discuss how the classical theory of x-ray diffraction can be used to simulate the intensity pattern produced by a powdered sample, generalised to the case where the finite size of the crystallites in the sample is accounted for. I will then explain how we are using this theory to develop new methods of measuring the shape and size of crystallites in a fractured crystal sample from x-ray diffraction data. [mehr]

MPSD Seminar

16665 1543492206

Nano Surface Science and Engineering for Energy Conversion and Diamond Transistors

Nano science and technology offer a vast and fascinating playground
to explore the novel physiochemical properties of nanomaterials with the development for various applications including energy conversion and electronics. [mehr]

MPSD Seminar

16745 1543402156

Ultrafast dynamics in condensed matter: from 2D materials to molecular magnets

The key to designing modern optoelectronic and magnetic functional materials lies in understanding how the charge carriers respond to the excitation on ultrafast timescales – tens or hundreds of femtoseconds. In this talk, I will introduce two projects which attempt to shed light on the fundamental processes behind the remarkable physics of two-dimensional materials and molecular magnets, and how we can control them. [mehr]

MPSD Seminar

16198 1542719197

An introduction to coupled-cluster theory, and recent developments in quantum embedding

Coupled-cluster theory has become a key tool in quantum chemistry, providing gold-standard accuracy for ground- and excited-state energetics, and other properties. [mehr]

MPSD Seminar

16108 1542207560

Ultrafast control of matter by high-field terahertz pulses

Terahertz interaction with matter has become one of the hottest topics in ultrafast community. Indeed, intense terahertz pulses have recently proved to be a pivotal tool to manipulate and control the properties of materials and especially complex condensed matter systems. The recent development of terahertz sources driven by lasers and accelerators has led to pioneering experiments demonstrating the access to new metastable phases of matter and nonlinear processes hindered to conventional laser excitation.In this talk, I will give an overview on the high-field terahertz generation and present the capabilities of the nonlinear terahertz spectroscopy. Recent experiments, including terahertz driven insulator-to-metal transition, nonlinear optical processes and coherent phonon control, are discussed. [mehr]

MPSD Seminar

15877 1540388639

DIALS for ED: Adapting X-ray software for electron diffraction integration

In recent years, electron diffraction has arisen as an alternative to X-ray diffraction for structural studies on threedimensional crystals. Promising features of the technique include complete data sets from a few or even singlenanocrystals, sensitivity to the charged state of ions and the relatively low expense of the apparatus. Experimentalprotocols and detector technologies are improving, so that data collection using the rotation method, dominant inX-ray crystallography, is now feasible in a cryoTEM. This convergence of experimental techniques has beenaccompanied by repurposing of analysis tools: robust and sophisticated algorithms developed over decades forX-ray diffraction integration software can be now employed to tackle electron diffraction data. Nevertheless, thegeometry of the electron diffraction experiment incurs specific challenges to address in the analysis. Here, thediffraction integration package DIALS is discussed, highlighting particular adaptations that were made to thesoftware for various example cases of electron diffraction, particularly on protein crystals. The experience gainedindicates that integration of good quality ED data can be straightforward, but the bottleneck remains with collectionof such good data, which relies on careful calibration and understanding of the instrument. Improved apparatus willameliorate this issue and future studies to develop improved models for details including dynamic diffraction andabsorption are anticipated. [mehr]

MPSD Health Seminar

15694 1539066993

Resilience: scientific background and its implications for our every-day life

Resilience and burnout both are not well defined concepts. But whereas theories about the development of a burnout-syndrom stress pathological pathways, theories about resilience are based on the concept of salutogenesis: two sides of thesame coin? [mehr]

MPSD Seminar

15808 1539873705

Exploring and Exploiting Photoacids to Reveal Ultrafast Hydrogen Bond and Proton Transfer Dynamics in Solution: How to Move from the Mid-IR to the Soft-X-Ray Regime

Elementary steps of proton transfer between acids and bases occur on ultrafast time scales. To elucidate the microscopic mechanisms of proton transfer many research groups have applied time-resolved spectroscopy utilizing a class of organic molecules called photoacids. In this talk I will provide an overview of results obtained by my research team on photoacid molecules with ultrafast infrared spectroscopy as a local probing technique. Whereas profound insight in aqueous proton transfer pathways in acid-base neutralization have been achieved in recent years, the underlying reasons for photoacidity have remained unsolved. Recent developments will be discussed how to tackle this unsolved question using the technique of soft-x-ray spectroscopy as an alternative local probe. For this liquid flatjet technology appears to be a highly promisingmethodological approach. [mehr]

MPSD Seminar

15742 1539615484

Elisa Palacino Gonzalez - Molecular Photodynamics of Open Quantum Systems. Simulation of Nonlinear Optical Spectroscopies using Nonperturbative Approaches

The theoretical description of nonlinear optical spectroscopy has traditionally been laid in the framework of perturbation theory. Within this formalism, an intuitive approach to the understanding of the dynamics of a molecular system excited by several external laser pulses is based on the concept of nonlinear response functions. However, as the system complexity increases or nontrivial dynamic effects have to be taken into account (nonadiabatic interstate couplings, bath-induced relaxation) the perturbative approach becomes computationally expensive. To tackle this scenario nonperturbative approaches based on the numerically exact solution of quantum equations of motions have been developed. [mehr]

MPSD Seminar

15553 1538124042

In Celebration of Basic Science: From the First Atomic Movies of Strongly Driven Phase Transitions to Star Trek Surgery

The 2018 European Physical Society Award Lecture for Research in Laser Science and Applications: The Picosecond Infrared Laser (PIRL) Scalpel: Achieving Fundamental (Single Cell) Limits to Minimally Invasive Surgery and Biodiagnostics. Followed by: The Future of PIRL Technology: Presentations and Round Table Discussion [mehr]

MPSD Seminar

15741 1539608230

Michael Bonitz - Femtosecond electron dynamics in strongly correlated finite systems


MPSD Seminar

15344 1536838877

Experimental study of carbon nanotube resonator

In recent years, due to the maturity of micro-nano fabrication technology, artificial nano-structures are widely studied, people actively explore the mechanical, thermal, optical and electromagnetic properties in a variety of nano-materials, among which the nano-mechanical resonator draws great attention for its potential use to study the light-matter interactions. In this presentation, I will first report our experimental results of two carbon nanotube mechanical resonators that are strongly coupled when the frequencies of them are tuned very close to each other. The vibrations of the two resonators superpose to produce a frequency splitting phenomenon, indicating a strong coupling regime. Second, a parametric strong coupling between two different modes within single mechanical resonator in linear regime of small amplitudes will be presented, which is different from the strong modes coupling in nonlinear regime. Finally, I will show that a back-and-forth coherent exchange of phonon energy in two different vibration modes, to realize a classical Rabi oscillations. [mehr]

MPSD Seminar

15343 1536838669

Study of pressure-induced abnormal ice growth and multipath water-ice transition with dynamic diamond anvil cell

Water, due to its unique hydrogen bonds, is one of the materials exhibiting diverse phases, crystal morphologies, and phase transformation. As a result of interplay between environmental conditions and molecular kinetics, more than 25 crystalline and amorphous ices have been reported with various growing morphologies from polyhedron to needle. Dynamic diamond anvil cell (dDAC), which may simply resolve the interference of macroscopic driving force and microscopic kinetics by changing compression rate, is essential to study complex phase transition behaviour of water. In the present study, we haveinvestigated the effect of compression rate on crystal growth and the multiple freezing-melting pathways of H2O under far-from-equilibrium condition by using dDAC at room temperature. First, we reveal the origin of shock growth of ice VI single crystal. Under rapid compression (strain rate > ~0.1 /s), we observed a morphological transition in ice VI growth from three-dimension (3-d) to twodimension (2-d) with one-order higher growth speed. It is found that local growth condition and interface kinetics can be affected by compression rate, which facilitate the 2-d shock growth. Secondly, we explore five different pathways of freezing and melting of deeply supercompressed water and ice via metastable phases. We will discuss the mechanism of freezing and melting by calculating driving force and interfacial free energy based on the classical nucleation theory, and comparing structure of supercompressed water and stable and metastable ices obtained from Raman spectroscopy. [mehr]

MPSD Seminar

15167 1536071247

Strain tuning of quantum materials

In this talk I will discuss the development of novel methods of applying uniaxialpressure to single crystals of quantum materials. Much of our work so far hasbeen on ruthenates, but I will also mention projects on other materials. I willshow that it is now possible to strain single crystals, reversibly, to change latticeparameters by at least 1%, and that this provides a ‘tuning energy scale’equivalent to the Zeeman energy of magnetic fields of well over 1000T. Uniaxial techniques are particularly suited to controlled tuning throughLifshitz transitions, and are also a useful complement to epitaxial strain in thenfilms, which is usually biaxial. [mehr]

MPSD Seminar

15168 1536071358

California New Age Physics: Sunshine, Crystals, and Quantum Geometry of Bands

Nonlinear optical properties of materials are important as tools in basicresearch and optical technology. Recently there has been a tremendousupsurge of interest in optical nonlinear effects, especially in crystals with curvedbandstructure geometry. Such materials are candidates for applications basedon the conversion of light to dc current. In this talk I describe our discovery thata family of Weyl semimetals has by far the largest second-order susceptibility ofany previously known crystal. In puzzling over this result, we uncovered asurprising theorem relating the strength of optical nonlinearity to a quantuminvariant property of the bandstructure that unites nonlinear optics with thecelebrated “modern theory of polarization.” This quantum invariant provides anew strategy for algorithmic computational searches for nonlinear materialswith optimal response functions. [mehr]

MPSD Seminar

15241 1536680558

Ultrafast quasiparticle dynamics and electronphononcoupling in single-layer FeSe/SrTiO3 and(Li0.84Fe0.16)OHFe0.98Se

Distinctive superconducting behaviors between bulk and monolayer FeSe make it challenging to obtain a unified picture of all FeSe-based superconductors. Here, we investigate the ultrafast quasiparticle dynamics of an intercalated superconductor (Li1-xFex)OHFe1-ySe, which is a bulk crystal but shares a similar electronic structure with single-layer FeSe on SrTiO3. We obtain the electronphonon coupling (EPC) constant λ (0.24 ± 0.03), which well bridges that of bulk FeSe crystal and single-layer FeSe/SrTiO3 [1]. Moreover, we find that such a positive correlation between λ and superconducting Tc holds among all knownFeSe-based superconductors, even in line with reported FeAs-based superconductors. Our observation indicates possible universal role of EPC in the superconductivity of all known categories of iron-based superconductors, which is a critical step towards achieving a unified superconducting mechanism for all iron-based superconductors.References:[1] Y. C. Tian, W. H. Zhang, F. S. Li, Y. L. Wu, Q. Wu, F. Sun, G. Y. Zhou, L. L. Wang, X. C. Ma, Q. K. Xue, Jimin Zhao, Ultrafast dynamics evidence of high temperature superconductivity in single unit cell FeSe on SrTiO3. PRL 116, 107001 (2016). [mehr]

MPSD Seminar

14806 1532601153

Ultrafast Laser-induced Kinetics in Two-dimensional Crystals

I will talk about our findings on the theory of ultrafast and ultrastrong optical field interacting with two-dimensional materials with an emphasis on honeycomb-shaped structures such as graphene. In fact, this talk is the emergence of two important and growing branches of science: ultrafast optics and 2D nanocrystals. Ultrafast optics or more specifically, attosecond science, is developed to study the quantum mechanical dynamics of electrons, both collective and individual, on atomic and molecular scales and in high-density mesoscopic systems. Recent advances in attosecond metrology and generation of ultrashort optical pulses with just a few oscillations of the electric field have provided real-time access to the motion of electrons on atomic and sub-atomic scales and opened a unique possibility for the coherent control of electron dynamics at sub-femtosecond time scale. Hence, the research and exploration of ultrafast dynamics of electrons in novel graphene-like materials under the illumination of few-cycle optical fields should prove useful to a growing community of scientists and hold promises for the future technologies especially high-speed memories, ultrafast imaging, and petahertz signal processing. [mehr]

MPSD Seminar

14352 1528971755

Higgs modes in d-wave and multi-band superconductors

Higgs mode (collective amplitude mode) in superconductors, recently detected and analysed in a conventional, s-wave superconductor, opens a novel avenue for probing the U(1) symmetry broken state. Now we have extended the notion to an unconventional, d-wave high-Tc cuprate, where a characteristic third-harmonic generation hallmarks the d-wave superconductor in a space-group resolved manner[1]. We can also predict unique features in Higgs and Leggett (phase) modes if we turn to multiband superconductors[2].[1] K. Katsumi et al, PRL 120, 117001 (2018).[2] Y. Murotani et al, PRB 95, 104503 (2017). [mehr]

MPSD Seminar

14351 1528971526

Superconductivity in single- and multi-band Hubbard models: can we optimise them?

We can capture various unconventional high-Tc superconductors basically either with single-band models or multiband ones. We can theoretically explore how we can optimise them for higher Tc's. There, "multiband" should not be confused with "multiorbital" systems, for which I shall compare merits and demerits of the two classes from both quantum many-body algorithms and materials-science points of view. For the former, I shall mention the dynamical vertex approximation to fathom the correlation between the electronic structure and the superconductivity and to search for enhanced Tc's. For the latter, I shall present various ideas that include "flat-band" superconductivity. [mehr]

MPSD Seminar

14402 1529494756

Ultrafast pump-probe spectroscopy in the ultra violet wavelength region

Explanation of the Pump-Probe spectroscopic technique with ultrashort pulses in the ultra-violet region.Firstly, it reveals the two fundamental requirements for our experiments, which are the generation of sub-20 fs monochromatic pulses, the pump pulses, in the UV and the generation of a second broadband pulse, the probe, explaining in detail the method that we used to overcome issues and problems. Experimental setup and components are described carefully, focusing on the physics principles behind. Then some experimental data are shown for Triptophan and Azzurin, in order to try to better understand the fast processes which happen in organic molecules. [mehr]

MPSD Seminar

14350 1528971302

Higgs mode in the d-wave cuprate superconductor Bi2Sr2CaCu2O8+δ induced by an intense THz pulse

The nonequilibrium dynamicis of the superconductors has been intensively studied over decades. Among the viriety of nonequlibrium phenomena, the study of the collective dynamics of superconducting order parameter is of essential importance, as it provides deep insights into the properties of the order parameter. Recent developments of generating intense electromagnetic pulses in the terahertz (THz) frequency range have enabled the access to low energy collective modes without giving excess energy to the system. Particularly the amplitude fluctuation of the order parameter, referred to as the Higgs mode, has been observed in a conventional s-wave superconductor Nb1-xTixN [1,2]. Its extension to unconventional d-wave superconductors is intriguing, whereas it has been nontrivial whether the Higgs mode in d-wave superconductors is observable or not. [mehr]

MPSD Seminar

14320 1528463795

Quantum Nanoscience: Atoms on Surfaces

The scanning tunneling microscope is an amazing tool because of its atomic-scale spatial resolution. This can be combined with the use of low temperatures, culminating in precise atom manipulation and spectroscopy with microvolt energy resolution. In this talk we will apply these techniques to the investigation of the quantum spin properties of magnetic atoms sitting on thin insulating films. [mehr]

MPSD Seminar

14290 1528280544

Workshop on Open Access Publishing

How can you publish via Open Access journals and boost your citations? What are GOLD and GREEN Open Access? Which science journals have Open Access or reduced fee agreements with the Max Planck Society? These and many other questions will be answered at this two-hour workshop. Open to all. To register, please mail [mehr]

MPSD Seminar

14164 1526650434

Gapless excitations in the ground state of 1T-TaS2

1T-TaS2 is a layered transition metal dichalcogenide with a very rich phase diagram, which was investigated since the early 1970s. At T=180K it undergoes a metal to Mott insulator transition. Mott insulators usually display anti-ferromagnetic ordering in the insulating phase but 1T-TaS2 was never shown to order magnetically. We have shown that 1T-TaS2 has a large paramagnetic contribution to the magnetic susceptibility but it does not show any sign of magnetic ordering or freezing down to 20mK, as probed by muSR, possibly indicating a quantum spin liquid ground state. Although 1T-TaS2 exhibits a strong resistive behavior both in and out of plane at low temperatures we find a linear term in the heat capacity suggesting the existence of a Fermi-surface, which has an anomalously strong magnetic field dependence. [mehr]

MPSD Seminar

14278 1528202927

Quantum control and dynamics with x-rays

More than fifty years ago, it was the invention of the laser that revolutionized atomic physics and laid the foundations for quantum optics and coherent control. With only optical frequencies available, the interaction of coherent light with matter was for a long time mainly restricted to atomic transitions. Only recently have novelhigh-frequency light sources rendered x-ray quantum optics possible. In this higher frequency regime, atomic nuclei rise as natural candidates for the interaction with coherent light creating a new bridge between atomic physics, quantum optics and nuclear condensed matter physics. Nuclei are very clean quantum systems, well isolated from the environment and benefiting from long coherence times. Combining the advantages of x-rays and nuclei, a prominent incentive is to exploit x-rays as the future quantum information carriers or for novel probing technologies based on quantum effects. Furthermore, the control of nuclear transitions would open the possibility to use long-lived nuclear excited states as a compact and clean energy storage solution. The lecture will follow the developments on the emerging field of x-ray quantum optics and focus on the mutual control of coherent x-ray radiation and nuclear transitions in this new regime of laser-matter interactions. [mehr]

MPSD Seminar

13671 1523535751

Short Course on: Ultrafast Spectroscopy of Phonons and Spin Excitations in Solids - Lecture VI

Lecture VI Abstract will follow. [mehr]

MPSD Seminar

14266 1528122902

Synchrotron Radiation from an Accelerating Light Pulse

Synchrotron radiation is regularly generated at large-scale facilities where GeV electrons move along kilometer-long circular paths. Here, we use a metasurface to bend light and demonstrate synchrotron radiation produced by a sub-picosecond pulse, which moves along a circular arc of radius 100 μm inside a nonlinear crystal. The emitted radiation, in the THz frequency range, results from the nonlinear polarization induced by the pulse. The generation of synchrotron radiation from a pulse revolving continuously about a circular trajectory has profound implications for on-chip THz sources. We present the first step towards this realization. [mehr]

MPSD Seminar

13670 1523535570

Short Course on: Ultrafast Spectroscopy of Phonons and Spin Excitations in Solids - Lecture V

Lecture V Abstract will follow. [mehr]

MPSD Seminar

13667 1523535473

Short Course on: Ultrafast Spectroscopy of Phonons and Spin Excitations in Solids - Lecture IV

Lecture IV Abstract will follow. [mehr]

MPSD Seminar

14175 1526650641

Ultrafast Electron Diffraction and Microscopy with High-Coherence Beams

Time-resolved electron imaging, diffraction and spectroscopy are exceptional laboratory-based tools to trace non-equilibrium dynamics in materials with a sensitivity to structural, electronic and electromagnetic degrees of freedom. The capabilities of these approaches are largely governed by the quality of the beam of electrons used.This talk will discuss recent advances made by employing high-coherence ultrashort electron pulses from nanoscale field emitters, which substantially enhance the achievable image resolution in both real and reciprocal space. Two complementary developments with ultimate surface sensitivity and spatial resolution, respectively, will be presented, namely Ultrafast Low-Energy Electron Diffraction (ULEED) and Ultrafast Transmission Electron Microscopy (UTEM). Several recent examples of applying these methods to the observation of phase-ordering kinetics, the excitation of strongly-coupled fluctuation modes and the control of metastable states will be given. [mehr]


14161 1526643739

Atomically resolved dynamics of correlated quantum systems


MPSD Seminar

13669 1527676435

Short Course on: Ultrafast Spectroscopy of Phonons and Spin Excitations in Solids - Lecture III

Lecture notes see 'more' [mehr]

MPSD ARD Seminar

MPSD Seminar

14106 1526396916

High-harmonic spectroscopy using bi-elliptical fields

Over the recent years, high-harmonic generation has established itself as a promising spectroscopic technique. Notable examples include the tomographic imaging of molecular wave functions [1], the tracking of nuclear dynamics [2], and the reconstruction of the attosecond time-scale electron dynamics in molecules [3, 4].All these applications, however, have been limited to laser fields with linear polarization. High harmonic generation has only recently been extended to circularly-polarized drivers by utilizing a technique known as bi-circular high-harmonic generation (BHHG) [5,6,7]. In this talk, I will demonstrate the spectroscopic applications of this technique to the study of structure and dynamics of gas-phase atoms and molecules in a self-probing manner. I will start with an analysis of the helicity asymmetry of BHHG in noble-gas atoms and then proceed by illustrating how BHHG can be applied to study dynamical symmetry-breaking in a time-dependent manner in the context of rotational and vibrational molecular motion.Extension of high-harmonic generation to the regime of highly-elliptical fields opens up the way towards the study of chiral phenomena in high-harmonic generation. In this work, circular dichroism in the range of 3-8 % is observed on randomly oriented methyl oxirane (C3H6O) molecules in the gas phase. This chiral sensitivity is attributed to the sub-cycle chiral electron dynamics involving excited states of the cation that take place during the electron continuum propagation. Finally, I will present a study of time-dependent chirality based on following the temporal evolution of circular dichroism during the course of an ultrafast photodissociation reaction. [mehr]

MPSD Seminar

13666 1527676589

Short Course on: Ultrafast Spectroscopy of Phonons and Spin Excitations in Solids - Lecture II

Lecture notes see 'more'. [mehr]

MPSD Seminar

13665 1527676604

Short Course on: Ultrafast Spectroscopy of Phonons and Spin Excitations in Solids - Lecture I

Lecture notes see 'more'. [mehr]

MPSD Seminar

13735 1523627150

A New Room Temperature Multiferroic in the Bi-Fe-O System

Multiferroic materials, which exhibiting simultaneously two or more coupled ferroic orders, are attracting extensive research interest mainly due to their promising device applications in low power electronics and the exotic physics involved. Despite the fact that an increasing number of multiferroics have been identified through two decades of diligent and creative studies, their low transition temperature or small magnetoelectric coupling strength has hindered direct device applications. Searching for materials with room-temperature ferroelectricity, a large enough magnetization and coupling between these two is still the Holy Grail for fundamental condensed matter research. In this talk, I will report a novel room temperature multiferroic in the Bi-Fe-O system. The material is comprised of a hitherto-unexplored, hexagonal crystalline structure with Bi2O3 layers separated by γ-Fe2O3 blocks, which blends the excellent ferroelectric and ferrimagnetic performances of BiFeO3 and γ-Fe2O3 together to form an exotic multiferroic material with ferroelectric and ferrimagnetic transition temperature of above 760 K and 600 K, respectively. A combination of experimental and theoretical studies reveals that the polar state stems from the two dissimilar Bi sites and extends further into oxygen ions with the exquisitely modulated structure. This finding identifies a novel strategy for the realization of high-temperature multiferroicity and paves the pathway for the realization of practical room temperature magnetoelectric devices. [mehr]

MPSD Seminar

13799 1523963295

Resonant Thermalization of periodically driven strongly correlated electrons


MPSD Seminar

MPSD Seminar

13446 1522938563

Liquid-Phase Electron Microscopy of Cells and Nanomaterials in Liquid

Transmission electron microscopy (TEM) has traditionally been associated with the study of thin solid samples in vacuum. With the availability of reliable thin membranes of silicon nitride, TEM of liquid specimens has become accessible with nanoscale resolution in the past decade [1]. The usage of scanning transmission electron microscopy (STEM) presents a novel concept to study membrane proteins within whole mammalian cells in their native liquid environment [2]. The cells in liquid are placed in a microfluidic chamber enclosing the sample in the vacuum of the electron microscope, and are then imaged with STEM. It is not always necessary to enclose the cells in the microfluidic chamber. For many studies, it is sufficient to obtain information from the thin outer regions of the cells, and those can be imaged with high resolution using environmental scanning electron microscopy (ESEM) with STEM detector [3]. A third option is to cover a liquid specimen under a thin membrane of graphene providing the thinnest possible layer [4]. Liquid STEM was used to explore the formation of HER2 homodimers at the single-molecule level in intact SKBR3 breast cancer cells in liquid state [3]. HER2 is a membrane protein and plays an important role in breast cancer aggressiveness and progression. Data analysis based on calculating the pair correlation function from individual HER2 positions revealed remarkable differences its functional state between rare- and bulk cancer cells with relevance for studying the role of cancer cell heterogeneity in drug response. We discovered a small sub-populations of cancer cells with a different response to a prescription drug [5]. Liquid STEM was also used to explore the behavior of nanoparticles in liquid in time-lapse experiments. It was discovered that nanoparticle movement in close proximity of the supporting silicon nitride membrane was three orders of magnitude slower than what was expected on the basis of Brownian motion for a bulk liquid [6], pointing to the existence of a layer of highly ordered liquid at the membrane. References [1] de Jonge, N. and Ross, F.M. Nat. Nanotechnol., 6, 695-704 (2011) [2] de Jonge, N., et al. Proc. Natl. Acad. Sci., 106, 2159-2164 (2009) [3] Peckys, D.B., et al. Sci. Adv., 1, e1500165 (2015) [4] Dahmke, I.N., et al. ACS Nano, 11, 11108-11117 (2017) [5] Peckys, D.B., et al. Mol. Biol. Cell, 28, 3193-3202 (2017) [6] Verch, A., et al. Langmuir, 31, 6956–6964 (2015) [mehr]

MPSD Seminar

13505 1522938489

Sub-optical-cycle control of light and matter


MPSD Seminar

13503 1522937711

Slow-Electrons Interacting with Light and Matter


MPSD Seminar

13387 1522938521

Numerically exact full counting statistics of the Anderson impurity model

The full characterization of charge transfer processes in molecular junctions requires techniques for evaluating not only the first and second moments of charge currents, but also higher-order statistical cumulants of the charge transfer process. The complete set of cumulants gives access to the full counting statistics (FCS) through the so-called generating function [1]. [mehr]

MPSD Seminar

MPSD Seminar

12449 1515660508

Takashi Oka - Applied Floquet engineering


MPSD Seminar

12436 1515576330

Mitsuharo Uemoto - TDDFT+Maxwell multiscale method for lightpropagation calculation in semiconducting media


loading content
Zur Redakteursansicht