Max-Planck-Institut für Struktur und Dynamik der Materie

Max Planck Institute for the Structure and Dynamics of Matter

IMPRS UFAST Call for PhD applications 2023/2024

PM1- Chiral electronic order: a rewindable twist for future electronics

Title of PhD Project	Chiral electronic order: a rewindable twist for future electronics
Туре	Experimental
Supervisor(s)	Prof. Philip Moll
	Dr. Chunyu Guo
Affiliation(s):	Max Planck Institute for the Structure and Dynamics of Matter
Number of positions:	1
Abstract:	Spontaneously broken symmetries are at the heart of many phenomena of
	quantum matter. Intriguing examples of these electronic instabilities include
	different quantum materials which display the formation of an
	unconventional chiral charge order featuring a tantalizing charge modulation
	and therefore present a fantastic sandbox to probe correlated quantum
	phenomena. This includes the first example of switchable electronic chirality,
	giving the future electronics a rewindable twist. The main scope of this
	project is to study these exotic chiral electronic orders in mesoscopically
	shaped single crystals carved by focused-ion-beam machining. As is an ideal
	micro-fabrication tool with high precision, it minimizes the influence of
	extrinsic imperfections, rendering the exploration of intrinsic electronic
	symmetries possible. Using this technique, you will be able to explore novel
	non-linear response due to the electronic symmetry breaking among a series
	of quasi-2D transition metal dichalcogenides (TMD), including higher
	harmonic generation and current rectification. Most importantly, unlike the
	chirality bounded by crystalline structure or shape, the comparatively low
	energy scales of these electronic orders make them readily tunable by
	external perturbations. This allows you to directly control the electronic
	symmetry via magnetic field and strain, paving the way of realizing unique
	applications for future electronics, such as controllable chiral rectifier and
	Josephson diode.
Contact person for	Dr. Chunyu Guo: Chunyu.guo@mpsd.mpg.de
scientific questions about	
the project:	

International Max Planck Research School for Ultrafast Imaging & Structural Dynamics (IMPRS UFAST), Luruper Chaussee 149, Building 99, 22761 Hamburg, Germany Spokesperson: Prof. Dr. Angel Rubio, Coordinator: Dr. Neda Lotfiomran