Max-Planck-Institut für Struktur und Dynamik der Materie

Max Planck Institute for the Structure and Dynamics of Matter

IMPRS UFAST Call for PhD applications 2023/2024

PM2- Non-Equilibrium Transport in High-Tc Superconductors

Title of PhD Project	Non-Equilibrium Transport in High-Tc Superconductors
Туре	Experimental
Supervisor(s)	Prof. Philip Moll
	Dr. Carsten Putzke
Affiliation(s):	Max Planck Institute for the Structure and Dynamics of Matter
Number of positions:	2
Abstract:	The question whether the large variety of electronic ground states in the
	phase diagram of high- T_c cuprates are competing with or promoting high
	temperature superconductivity, or if a possible quantum critical point lays
	at the heart of high- T_c superconductivity is under constant debate.
	In this project we aim for a better understanding of the interplay between
	the large number of ground states with a novel approach. Instead of
	suppressing superconductivity with high magnetic field, which could also
	affect other phases of interest themselves, we will use high, ultra-short
	current pulses in micro-structured devices to suppress superconductivity,
	forcing the system to reveal its unmasked correlated ground state in
	electrical transport measurements.
	In addition, the project holds the potential for the discovery of new ground
	states that are prevented by the formation of cooper pairs in the high- \mathcal{T}_c
	superconducting phase. One example is the stabilization of charge order
	in high magnetic $YBa_2Cu_3O_{6+\delta}$.
	This project combines state of the art experimental capabilities in micro-
	structuring of quantum matter, the preparation of specialized sample
	environments by clean-room technology as well as the development of
	electrical transport measurements in the ultra-fast time scale at low
	temperatures and high magnetic field.
Contact person for	Dr. Carsten Putzke: Carsten.Putzke@mpsd.mpg.de
scientific questions about	
the project:	

International Max Planck Research School for Ultrafast Imaging & Structural Dynamics (IMPRS UFAST), Luruper Chaussee 149, Building 99, 22761 Hamburg, Germany Spokesperson: Prof. Dr. Angel Rubio, Coordinator: Dr. Neda Lotfiomran