Max-Planck-Institut für Struktur und Dynamik der Materie

Max Planck Institute for the Structure and Dynamics of Matter

IMPRS UFAST Call for PhD applications 2024/2025

Project Title: PM4 - Dynamic Heat transport measurements in novel quantum conditions

Title of PhD Project	Dynamic Heat transport measurements in novel quantum conditions
Туре	Experimental
Supervisor(s)	Dr. Chunyu Guo
Affiliation(s):	Max Planck Institute for the Structure and Dynamics of Matter
Number of positions:	1
Abstract:	In 1853, two German physicists, Gustav Wiedemann and Rudolf Franz, found
	that electric and thermal conductivity is directly proportional in metals. This
	relation is later named Wiedemann-Franz (WF) law after them. Despite its
	simple form, it has become one of the most important guiding principles in
	condensed matter physics research. However, the empirical application of
	WF law is challenged by the recent emergence of quantum materials, where
	quantum mechanics manifest their properties strongly and, therefore, lead
	to an exotic matter of state beyond trivial band description.
	The central goal of this project is to justify the utilization regime of WF law
	and establish a more empirical link between heat and charge transfer among
	the novel quantum materials. This will help us to establish a desperately
	needed basis for exploring exotic heat/electricity conversion due to non- trivial band topology and/or strong electronic correlations.
	This project provides an exceptional opportunity to develop a unique
	approach for simultaneous heat and charge transport measurements in
	microstructured quantum materials. It is achievable by combining state-of-
	the-art experimental capabilities in the microstructuring of quantum matter
	and heat propagation analysis based on finite element simulations.
Contact person for	Prof. Philip Moll: philip.moll@mpsd.mpg.de
scientific questions about	Dr. Chunyu Guo: <u>chunyu.guo@mpsd.mpg.de</u>
the project:	
Research Group Website:	https://www.mpsd.mpg.de/research/microstructured-quantum-matter

International Max Planck Research School for Ultrafast Imaging & Structural Dynamics (IMPRS UFAST), Luruper Chaussee 149, Building 99, 22761 Hamburg, Germany Spokesperson: Prof. Dr. Angel Rubio, Coordinator: Dr. Neda Lotfiomran