Max-Planck-Institut für Struktur und Dynamik der Materie

Max Planck Institute for the Structure and Dynamics of Matter

NH1- Understanding light-initiated reaction pathways in catalytic transition metal complexes with ultrafast X-ray spectroscopy

Title of PhD Project	Understanding light-initiated reaction pathways in catalytic transition
	metal complexes with ultrafast X-ray spectroscopy
Туре	Experimental
Supervisor(s)	Nils Huse
Affiliation(s):	ИНН
Number of positions:	1
Abstract:	Transition-metal complexes are widely found in natural enzymes. Their ability
	to exist in different oxidation states allows storing and withdrawing valence charge density without the need for radical formation. We study light-in-
	duced processes in transition-metal complexes to elucidate reaction pathways ¹⁻³ that require high time-resolution because the excited states and product intermediates are short-lived and thereby elusive to techniques that lack femtosecond response functions.
	We employ time-resolved spectroscopy to study catalytic systems with emphasis on fundamental research and method development. Of particular interest is the use of X-rays because of the element-specificity of X-ray spectroscopy. The short wavelengths also permit the measurement of atomic distances in scattering measurements.
	The project will employ X-ray and optical lasers to investigate small molecular systems in solution. Ultrafast in-house laser labs require basic understanding of optics and lasers as well as quantum mechanics and/or quantum chemistry. Measurement campaigns (beamtimes) at large-scale user facilities such as X-ray lasers in Hamburg, Switzerland, Korea and California will also be part of the project which is international and interdisciplinary in character.
	 R. Jay et al, J. Am. Chem. Soc. 146, 14000 (2024) A. Banerjee et al, Chem Sci. 15, 2398 (2024) R. Jay et al, Science 380, 6648, (2023)
Contact person for scien-	Nils Huse, nils.huse@uni-hamburg.de
tific questions about the project:	

