Veranstaltungsarchiv 2016

Hier finden Sie vergangene Veranstaltungen des MPSDs und der MPSD-Forschungsgruppen an der Universität Hamburg.

MPSD Seminar

7760 1479991416

Matteo Lucchini - Attosecond dynamics in polycrystalline diamond

The possibility to manipulate the electrical properties of matter with very short opticalpulses is a fascinating field of research with possible far reaching applications inmany relevant technological fields. The first step towards the realization of this goal is to understand the ultrafast dynamics at the basis of light-matter interaction. Short and intense pulses allowed us to investigate a very interesting regime where the photon energy becomes comparable to the cycle-averaged kinetic energy of the electrons in the field. As the optical response of the material transitions from a classical to quantum-mechanical description many intriguing effects co-exist in this regime and the importance of inter- versus intra-band transitions is still debated. We used attosecond transient absorption spectroscopy (ATAS) to study the optical response of polycrystalline diamond driven by few-femtosecond, intense (IIR ~1012 W/cm2) infrared (IR) pulses. We monitored the system response by looking at the induced change in the absorbance with a 250-as pulse centred around 40 eV. We observed the appearance of oscillating features which modulate at twice the IR frequency, ωIR, and fully recover after the interaction. Simultaneous photoelectron acquisition from a gas nozzle placed in front of the diamond target allowed us to study the phase relation of the oscillating features and the pumping IR field. We found that the timing of the diamond response changes significantly with the probing energy and does not always follow the IR field adiabatically. Ab initio calculations performed by coupling time-dependent density functional theory (TDDFT) in real time with Maxwell’s equations reproduced the experimental observations. Further comparison with a numerical two-band model allowed us to conclude that intra-band motion dominates over inter-band transitions, thus identifying the dynamical Franz- Keldysh effect as the dominant mechanism in this regime. Our analysis constitutes an important step towards a full understanding of the optical properties of dielectrics in the Petahertz regime. [mehr]

MPSD Seminar

7683 1479296282

Sergey Brener - Some aspects of intrinsic electron-photon interaction in black phosphorus

Flexural and in-plane thermal fluctuations in crystalline membranes affect the band structure of the carriers, which has an effect on transport properties as well as carrier density of states of 2D systems. I consider a specific example of one-layer black phosphorus, which is a highly anisotropic material, and present our recent results on intrinsic carrier mobility. In contrast to graphene, where the mobility is determined by two-phonon (flexural) scattering, in black phosphorus one-phonon (in-plane) processes dominate. I also will show the results on DOS tail for holes in black phosphorus that have quasi-one-dimensional dispersion (my /mx » 1) and, as a result, an enhanced Van Hove singularity at the valence band top. Interaction with flexural phonons results in smearing of this singularity and to an appearing of a tail in DOS in the gap. The material parameters are determined by ab initio GW calculations and then are used for quantitative estimation of the above-mentioned effects. [mehr]

MPSD Seminar

7604 1478683829

Energy and Entropy Transfer in Natural and Handmade Systems

The talk will cover the resonance energy transfer in light-harvesting systems and entropy transfer in nanomechancial resonators.In the first part, I will present a classical formulation of the quantum multichromophoric theory of resonance energy transfer developed on the basis of classical electrodynamics. The theory allows for the identification of a variety of processes of different order in the interactions that contribute to the energy transfer in molecular aggregates with intracoupling in donors and acceptor chromophores. Enhanced rates in multichromophoric resonance energy transfer are shown to be well described by this theory. Specifically, in a coupling configuration between $N_A$ acceptors and $N_D$ donors, the theory correctly predicts an enhancement of the energy transfer rate dependent on the total number of donoracceptor pairs. As an example, the theory, applied to the transfer rate in light harvesting II, gives results in excellent agreement with experiment. Finally, it is explicitly shown that as long as linear response theory holds, the classical multichromophoric theory formally coincides with the quantum formulation.In the second part, I will present a sideband cooling strategy that incorporates (i) the dynamics induced by structured (non-Markovian) environments in the target and auxiliary systems and (ii) the optimally time-modulated interaction between them. For the context of cavity optomechanics, when non-Markovian dynamics are considered in the target system, ground state cooling is reached at much faster rates and at much lower phonon occupation number than previously reported. In contrast to similar current strategies, ground state cooling is reached here for coupling-strength rates that are experimentally accessible for the state-of-the-art implementations. After the ultrafast optimal-ground-state-cooling protocol is accomplished, an additional optimal control strategy is considered to maintain the phonon number as closer as possible to the one obtained in the cooling procedure. Contrary to the conventional expectation, when non-Markovian dynamics are considered in the auxiliary system, the efficiency of the cooling protocol is undermined. [mehr]

MPSD Seminar

7529 1477580346

Designing Excitons in van der Waals Heterostructures

Van der Waals heterostructures (vdWHs) represent a novel and largely unexplored class of materials. Since 2013, when Geim and Grigorieva first conceived the stacking of 2D (two-dimensional) materials to create artificial layered structures with tailored properties, a number of promising (opto)electronics devices, e.g. light emitting diodes, solar cells, ultra-fast photodetectors, transistors etc. have been successfully fabricated. It is well established that for isolated 2D semiconductors and vdWHs the optical response is governed by excitonic effects. A theoretical understanding of excitonic effects and of how the electronic screening is affected for the more complex case of multi-layer structures is still lacking due to the computational limitations of standard ab-initio methods. [mehr]

MPSD Seminar

6342 1472806240

Memcomputing: a brain-inspired topological computing paradigm

Which features make the brain such a powerful and energy-efficient computing machine? Can we reproduce them in the solid state, and if so, what type of computing paradigm would we obtain? [mehr]

MPSD Seminar

6341 1471948242

The Particle-Hole Map: a Computational Tool to Visualize Electronic Excitations

The particle-hole map (PHM) is a new visualization tool to analyze electronic excitations in molecules in the time- or frequency domain, to be used in conjunction with TDDFT or other ab initio methods [1–3]. The purpose of the PHM is to give detailed insight into electronic excitation processes which is not obtainable from local visualization methods such as transition densities, density differences, or natural transition orbitals. The PHM provides information on the origins, destinations, and coherences of charge fluctuations during an excitation process. In contrast with the transition density matrix, the PHM has a statistical interpretation involving joint probabilities of individual states and their transitions, and it is easier to read and interpret. [mehr]

MPSD Seminar

6244 1469455014

Early charge separation events in light-harvesting materials

The photoinduced charge-separation events occurring in photovoltaic and light harvesting systems have traditionally been interpreted in terms of the incoherent kinetics of optical excitations and of charge hopping. Although signatures of quantum coherence were recently observed in energy transfer in photosynthetic bacteria andalgae[1] still very little is known about the role of quantum coherence at room temperature in technologically relevant organic photovoltaic materials. Recent experiments found evidence for an ultrafast long-range charge separation in such systems but could not differentiate between coherent and incoherent charge-transfermodels.[2] [mehr]

MPSD Seminar

5140 1459249509

Spin-wave induced polarization control of stacked vortices

Magnetic vortices occur in soft magnetic nanodisks with suitable dimensions. The spin structure curls in the plane around the center where it points out-of-plane either up or down, defining the polarization P = ±1. Thus, the vortex core represents a binary digit that can be used for magnetic storage devices. Ferromagnetic resonance spectroscopy is used to investigate the high-frequency spectra of two stacked vortices depending on the relative polarizations. In this work, it is shown that magnetic field bursts with frequencies in the Gigahertz range can be used to control the polarization on a sub-nanosecond time scale. The demonstrated writing times are more than two magnitudes faster compared to settling times achieved with the gyrotropic mode. Furthermore, polarization dependent spin-wave modes that lead to a selective spin-wave mediated vortex core reversal are imaged by scanning transmission X-ray microscopy. [mehr]

 
loading content
Zur Redakteursansicht