^{2}) infrared (IR) pulses. We monitored the system response by looking at the induced change in the absorbance with a 250-as pulse centred around 40 eV. We observed the appearance of oscillating features which modulate at twice the IR frequency, ωIR, and fully recover after the interaction. Simultaneous photoelectron acquisition from a gas nozzle placed in front of the diamond target allowed us to study the phase relation of the oscillating features and the pumping IR field. We found that the timing of the diamond response changes significantly with the probing energy and does not always follow the IR field adiabatically. Ab initio calculations performed by coupling time-dependent density functional theory (TDDFT) in real time with Maxwell’s equations reproduced the experimental observations. Further comparison with a numerical two-band model allowed us to conclude that intra-band motion dominates over inter-band transitions, thus identifying the dynamical Franz- Keldysh effect as the dominant mechanism in this regime. Our analysis constitutes an important step towards a full understanding of the optical properties of dielectrics in the Petahertz regime. [mehr]

_{3}are a rich family of ionic compounds with many technological interesting properties. They can be traditional inorganic, metal per- ovskites or hybrid perovskites with one organic cation. In this talk I want to discuss some results of a special modification of the latter kind, the so-called layered perovskites. This family of structures is currently rediscovered, and we report on the geometrical and electronic structure of one promising candidate ((C

_{6}H

_{5}C

_{2}H

_{4}NH

_{3})

_{2}PbI

_{4}) with phenethylammonium cations on the A-site and compare the differences towards the benchmark case of three-dimensional (3D) hybrid perovskites, CH

_{3}PbI

_{3}. The influence of varying the cation as well as changing the dimensionality from 3D to 2D systems is discussed by comparing bulk and monolayer structures of both systems. In addition, insight into the optical behavior and the observed electron-phonon coupling will be given. [mehr]

*g*" is generically the lowest order symmetry-allowed direct coupling of an IR-active phonon coordinate

_{2}n_{el }x^{2}_{IR}*x*to the electronic density

_{IR}*n*in systems with inversion symmetry. In this talk I will present model evidence for light-enhanced electron-phonon coupling and light-induced effective attraction between electrons based on nonlinear electron-phonon coupling [3], the latter of which was already discussed in a similar context in [4]. [1] M. Mitrano et al., Nature 530, 461 (2016) [2] E. Pomarico et al., Phys. Rev. B 95, 024304 (2017) [3] M. A. Sentef, arXiv: 1702.00952 [4] D. M. Kennes et al., Nature Physics (2017) , doi:10.1038/nphys4024, arXiv:1609.03802 [mehr]

_{el}_{2}, it has been found that the spin randomization is characteristically faster than the time scales for inter- and intra-valley scatterings. In this talk, I present our recent study of the ultrafast non-collinear spin dynamics of the electron in a valley of monolayer MoS2 by using real-time propagation time-dependent density functional theory. We found that the spin precession is sharply selectively coupled only with the particular optical phonon that lifts the in-plane mirror symmetry. We suggest that the observed spin randomization can be attributed to this spin-phonon interaction. Further, our results imply that flipping of spins in a spin-orbit-coupled system can be achieved by the control over phonons. In a later part of the talk, I would also describe the feature of the computational package we have developed and have used for the spin-phonon dynamics, which is based on the plane-wave basis set and various types of pseudopotentials. [mehr]

_{2}, and show that its success is the result of error compensation between semi-local and non-local exchange, resulting in a proper derivative discontinuity (reproduction of the band gap) and a total energy which is a linear function of the fractional occupation numbers (removing most of the electron self-interaction). As it is well known, however, HSE06 does not work equally well for all materials. On the example of Ga

_{2}O

_{3}, I will show that tuning both the mixing and the screening parameter of HSE for the given material allows to ensure the same error compensation. Unless the electronic screening is strongly direction- or orbital-dependent (as in ZnO), the optimized HSE hybrid is nearly self-interaction free and provides a band structure on par with GW. Since the total energy can also be calculated, the real equilibrium structure of a defect can be found and the levels are in good agreement with experimental observations. [mehr]

^{[1]}. We introduce a microscopic description solving the Maxwell equations for the light electromagnetic fields and the time-dependent Kohn-Sham equation for the electron dynamics simultaneously in the time domain on a common real-space grid. This scheme can simulate the light-matter interaction in thin films irrespective of the film thickness and the light intensity. [mehr]