Nanostructures can control the properties of light
A study led by Angel Rubio has simulated a new device to generate terahertz radiation using carbon nanostructures
Angel Rubio, director at the Max Planck Institute for the Structure and Dynamics of Matter and leader of the Nano-bio Spectroscopy Group at the University of the Basque Country in San Sebastián, Spain has simulated the conversion of ultraviolet light into radiation in the terahertz range by making it pass through a graphene nano-ribbon, and has put forward a new compact device designed to generate radiation of this type based on the phenomenon discovered. The research, conducted in collaboration with the research group led by Yoshiyuki Miyamoto of the National Institute of Advanced Industrial Science and Technology (AIST) of Japan, has appeared in the journal Nanoscale, published by the Royal Society of Chemistry (United Kingdom).
Low-frequency terahertz radiation has a broad range of applications, such as the characterization of molecules, materials, tissues, etc. However, right now it is difficult to manufacture small, efficient, low-cost devices to produce terahertz radiation. This phenomenon "extends the range of applicability of radiation of this type to many other spheres in which it was not being used," explained Angel Rubio, "owing to the fact that one would have to resort to much bigger radiation sources."
The starting point of a new field of research
To carry out this simulation, they used graphene nano-ribbons: strips cut out of sheets of graphene. They concluded that UV light that exerts an effect on the nano-ribbon emits a totally different radiation (in the terahertz frequency range) perpendicular to the incident light. This phenomenon "opens up the possibility of generating structures that will allow the frequency range to be changed using different nanostructures," explained Prof. Rubio. "A new field of research is being opened up."
Now that the existence of the phenomenon has been demonstrated, "it would be necessary to see if the same thing can be done with a different type of light source," explained Angel Rubio. In the present study they used a high-intensity laser so that the simulation would be correct, but it should be possible to use "more accessible light sources", he specified. What is more, another step to be taken in this field would be "to use a set of nanostructures instead of a single one to produce an actual device."
Angel Rubio has worked on the proposal of the idea and its implementation in code that allows a simulation to be made on the computer, while the Japanese research centre AIST has been responsible for the numerical calculations. The researchers have used novel simulation techniques of first principles, methods in which the predictive capacity is very high: the behaviour of a material is predicted without using external parameters. "The simulation techniques have reached a point," concluded Rubio, "where systems that are later shown to actually behave in the same way experimentally can be predicted".