News

Illustration of long range electron coherence

Physicists at the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg have discovered a striking new form of quantum behavior. In star-shaped Kagome crystals—named after a traditional Japanese bamboo-basket woven pattern—electrons that usually act like a noisy crowd suddenly synchronize, forming a collective “song” that evolves with the crystal’s shape. The study, published in Nature, reveals that geometry itself can tune quantum coherence, opening new possibilities to develop  materials where form defines function. more

scientific graphic

Quantum materials are a fascinating platform for future technologies, as they host a variety of exotic phenomena beyond the reach of classical physics. Among them, van der Waals heterostructures stand out: They are created by stacking different two-dimensional layers that can be only one atom thick. These structures are remarkably easy to manipulate, offering unprecedented tunability and a vast realm for exploration. A team from the Max-Planck-Institute for the Structure and Dynamics of Matter (MPSD) and Columbia University has found that van der Waals heterostructures can naturally serve as cavities for long-wavelength terahertz (THz) light. This work has been published in Nature Physics. more

Terahertz pulses induce chirality in a non-chiral crystal

Chirality is a fundamental property of matter that determines many biological, chemical and physical phenomena. Chiral solids, for example, offer exciting opportunities for catalysis, sensing and optical devices by enabling unique interactions with chiral molecules and polarized light. These properties are however established when the material is grown, that is, the left- and right-handed enantiomers cannot be converted into one another without melting and recrystallization. Researchers at the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) and the University of Oxford have shown that terahertz light can induce chirality in a non-chiral crystal, allowing either left- or right-handed enantiomers to emerge on demand. The finding, reported in Science, opens up exciting possibilities for exploring novel non-equilibrium phenomena in complex materials. more

Philip Moll honored with APS Fellowship

MPSD Director Philip Moll has been elected a Fellow of the American Physical Society (APS) for his achievements in the field of microstructured quantum matter. more

Max Planck-New York Center renewed for five years

The renewed funding comes from Columbia University, the Flatiron Institute, the MPSD and the Max Planck Institute for Polymer Research in Mainz, Germany. The New York Center will also expand to include Cornell University as a new partner institution. more

Show more
Go to Editor View