Ferroic materials, like ferromagnets and ferroelectrics, are central building blocks of modern data storage technology. Yet, current platforms face fundamental limits. Ferromagnets suffer from low switching speed, while the ferroelectric polarization is generally unstable because of the depolarizing response of the surrounding material. A newly discovered class of materials, which do not suffer from these limitations, are so-called ferroaxials. They are formed by microscopic vortices of electric dipoles that can either be arranged in a clockwise or anticlockwise texture, yet they are extremely difficult to manipulate. Researchers at the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) and the University of Oxford have now shown that the bi-stable ferroaxial states can be switched on demand using single ultrashort flashes of circularly polarized terahertz light. This discovery establishes a new mechanism that may lead to light-controlled, ultrafast and stable ferroic switching, and a promising platform for next-generation non-volatile data storage technologies.
more