Archive 2017

Here you can find past events of the MPSD institute.

Room: Seminar Room III, EG.080 Host: Angel Rubio

Franco Bonafé - Time-dependent electron-nuclear dynamics in DFTB+: theory and applications

MPSD Seminar
This seminar will be focused on an implementation of electron-nuclear real-time dynamics within the Density Functional Tight-Binding (DFTB) formalism in the DFTB+ package[1], as a result of a collaboration between the Quantum Dynamics Group (University of Córdoba) and the BCCMS (University of Bremen). Some theory details will be presented as well as its application to explain the launching of mechanical oscillations in metal nanoparticles under plasmon-resonant laser illumination[2]. [more]

Binghai Yan - Nonlinear optical responses of Weyl semimetal materials

MPSD Seminar
In the band structure of a Weyl semimetal (WSM), the conduction and valence bands cross each linearly through Weyl points that are usually treated as “monopoles” of the Berry curvature. As a second-order response, WSMs were very recently demonstrated to show strong nonlinear optical effects including an exotic nonlinear Hall effect. This is caused by the non-equilibrium distribution of the Berry curvature, described as the “dipole” of the Berry curvature. In this talk, I will talk about our recent computational results on nonlinear response for representative WSM materials TaAs and MoTe2. [more]

Ryan Requist - Reduced formula for the macroscopic polarization including quantum Fluctuations

MPSD Seminar
The macroscopic polarization of a solid is an fundamental quantity from which permittivity and piezoelectric tensors can be derived. The Berry phase formula of King-Smith and Vanderbilt expresses the macroscopic polarization in terms of the Bloch states of a mean-field band structure, almost invariably taken from density functional theory. Although this procedure has been successful for many materials, quantum fluctuations cause it to break down in strongly correlated systems. [more]

Tong Zhou - Quantum Spin-quantum Anomalous Hall Effect with Tunable Edge States in Sb Monolayer-based Materials

MPSD Seminar
The quantum anomalous Hall (QAH) effect, quantum spin Hall (QSH) effect and (quantum) valley Hall ((Q)VH) effect have attracted considerable attention in condensed matter physics and material science. Generally, only one of the QAH, QSH, and QVH effects can be realized in a specific system. It would be very interesting if these three effects can be achieved in one single system. In this talk, I shall represent this interesting imagination may be realized in Sb monolayer-based materials, where the QAH state occurs at one valley and the QSH state occurs at the other valley, called quantum spin-quantum anomalous Hall (QSQAH) effect. [more]

Niko Säkkinen - Application of Time-Dependent Many-Body Perturbation Theory to Excitation Spectra of Selected Finite Model Systems

MPSD Seminar
Many-Body Perturbation Theory (MBPT) is a methodology routinely employed in computational spectroscopy to calculate photoemission and absorption spectra. However, usually these computational experiments are only possible for real nanostructures, solids, etc. by resorting to simple approximations in which, e.g., self-consistency is neglected. [more]
Go to Editor View