Archiv 2019

Gastgeber: Andrea Cavalleri

Electronic dynamics of strange metals

MPSD Seminar
The normal state of unconventional superconductors often exhibits anomalous transport properties and it is commonly referred to as a “bad” or “strange” metal. Understanding its collective charge dynamics, which defies the standard quasiparticle description of a Fermi liquid, is an outstanding challenge of modern condensed matter physics.In this talk, I will present a direct measurement of the collective charge dynamics of the strange metal using inelastic electron scattering. First, I will discuss how normal-state Bi2Sr2CaCu2O8+d is defined by a featureless, localized continuum, undergoing a low-temperature massive spectral weight redistribution. I will then describe how such a phase is found to coexist with a low-energy Fermi liquid in Sr2RuO4.These results indicate that strange metals are highly localized in space and dissipate on ultrafast timescales, seemingly bound only by quantum limits. Implications for the occurrence of high-temperature superconductivity will be discussed. [mehr]

Aqueous Nanoscale Systems

MPSD Seminar
  • Datum: 07.11.2019
  • Uhrzeit: 15:00 - 16:00
  • Vortragende: Sylvie Roke
  • Laboratory for fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH 1015 Lausanne, Switzerland
  • Ort: CFEL (Bldg. 99)
  • Raum: Seminar Room III, EG.080
  • Gastgeber: Andrea Cavalleri
Water is the most important liquid for life. It is intimately linked to our well-being. Without water, cell membranes cannot function. Charges and charged groups cannot be dissolved, self-assembly cannot occur, and proteins cannot fold. Apart from the intimate link with life, water also shapes the earth and our climate. Our landscape is formed by slow eroding/dissolving processes of rocks in river and sea water; aerosols and rain drops provide a means of transport of water. Because of the complexity of liquid water and aqueous interfaces, the relationship between the unique properties of water and its molecular structure has not been solved. [mehr]

Growth Dynamics of Graphene on molten copper

MPSD Seminar
Since it’s discovery in 2006, Graphene has known no rivals in terms of number of applications that scientists from all over the globe have thought for him, ranging from spintronics to energy storage, from transistors to bio-compatible devices. However, what’s still hindering his big step from laboratories to industry is a cost-effective method to synthesize large-scale good-quality crystals. Over the past decade, great improvements have been made in this direction, and CVD consolidated as an excellent candidate for this arduous task. Among other methods, a novel technique consisting in the synthesis of crystals on transition metals in the liquid phase has proven to overcome many difficulties related to defect-inducing dislocations and low-diffusivity of solid substrates. Nevertheless, a clear physical insight over the processes involved during graphene nucleation and growth is still lacking, and many of its parameters are derived by post-process analyses, neglecting those crucial intermediate steps that may conceal key-factors involved in the process. The reason for this trend is that it’s technically difficult to combine different experimental set-ups, and an ad-hoc design is more than ever needed to conduct a complete and satisfying investigation. This is the reason behind the LMCat project, that developed a reactor suitable both for CVD growth at high temperature by hydrocarbon decomposition and for in-situ Raman and optical studies, in order to follow in real time the growth of graphene flakes and, at the same time, determine its physical properties. Additionally, it aims to prove X-ray techniques, such as GID and XRR, as an efficient tool for high temperature characterization, a feat never achieved before. This is the framework of this thesis work, which can of course cover it only partially and at a rather early stage. The focus has been put on the surprising high contrast showed by radiative optical microscopy at high temperatures (∼ 1100 C°) and on the first, surprising results coming from X-ray analysis. The former has been proven as an effective tool for following the growth and derive kinematical parameters, the latter as a potential tool for quantitatively estimate its crystal structure at conditions prohibitive for standard probes. [mehr]

Ultrafast single-molecule videography and choreography

MPSD Seminar
To understand the function of condensed matter, it would be desirable to directly watch its atomistic building blocks dynamically interact on their intrinsic length and time scales. Recently, lightwave electronics has made this long-standing dream come true. The idea is to exploit the carrier wave of light as an ultrafast, contact-free bias to interrogate and control the nanocosm. I will first review how lightwaves can drive electrons in solids into surprising sub-cycle quantum motion. By combining this idea with the sub-angstrom spatial resolution of scanning tunnelling microscopy we can set an ultrashort time window for single-electron tunnelling into a single orbital and record first atom-scale slow-motion movies of individual vibrating molecules. Finally, I will show how to directly exert femtosecond atomic forces, which can selectively choreograph a coherent structural motion of a single-molecule switch in its electronic ground state. This stunningly direct access to the atomistic world may tailor key elementary dynamics in nature and steer (bio)chemical reactions or ultrafast phase transitions, on their intrinsic spatio-temporal scales. [mehr]

Electronic and Vibrational Properties of Colloidal Nanocrystals

MPSD Seminar
Colloidal nanocrystals (CNCs) are nanometer sized crystals grown in solution. Due to their size-tunable optical properties, CNCs have emerged as a novel material platform for numerous applications such as displays, photovoltaics, and biological tagging. However, the colloidal growth process results in an unavoidable distribution of CNC size that inhomogeneously broadens optical absorption/luminescence lineshapes. 2-D spectroscopy is a technique capable of circumventing inhomogeneous broadening by correlating absorption and emission dynamics. In this talk I will present our results from applying 2-D spectroscopy to CNCs at cryogenic temperatures. I will first discuss our experiments on conventional CdSe CNCs, in which we have simultaneously observed both bulk-like acoustic phonons and acoustic vibrations discretized by the nanocrystal geometry for the first time. Next, I discuss our experiments on perovskite CNCs, which are a new class of materials first synthesized in 2015. We demonstrate that coherences due to vibrational coupling exhibit anomalous dephasing dynamics, which we attribute to a cascaded coherence transfer process. Finally, I discuss our observations of coherences between so-called bright-triplet exciton states, which are robust at high temperatures and polarization-selective. [mehr]

Tuning quantum materials out of equilibrium: A FIB-microstructuring approach

MPSD Seminar
“Quantum materials” loosely defines a broad collection of materials whose ground states are defined by unusual quantum properties. This research largely focuses on macroscopic single crystals, yet naturally interesting quantum phenomena lie beyond their equilibrium state. My group works towards reducing the sample size onto the sub-mm length scale, following the general idea that small samples can be driven more strongly and react faster than on the macro scale. Our main tool is Focused Ion Beam machining capable of cutting single crystals into high quality quantum devices. I will present two concrete research projects showcasing how new quantum states out of equilibrium can be accessed and investigated in FIB-prepared microcrystal structures. The first concerns the heavy fermion superconductor, CeIrIn5 (Tc~400mK). When a mm-sized structure is firmly coupled to a mm-sized substrate of different thermal expansion, the microstructure is under significant strain at low temperatures. By precisely controlling its shape, the emergent strain field can be controlled. The key difference to other approaches, such as uniaxial strain, is that complex, yet well-controlled, spatially varying strain fields can be achieved. In collaboration with Katja Nowack (Cornell), we have experimentally mapped out the resulting superconducting landscape in the devices using scanning-SQUID microscopy, and show that this spatial modulation can be well captured by finite element simulations. [1] Second, I will present our ongoing efforts to experimentally identify pseudo-magnetic fields in 3D Dirac semi-metals [2,3]. Owing to their Dirac dispersion, deformation of the crystal structure does not open a gap at the nodes, but shifts the location of the nodes in k-space and hence playing the role of a “pseudo-magnetic field”, B5. I will show how microstructuring gives us unprecedented control of such a process, and discuss how future. [mehr]

Electrical control of quantum spins

MPSD Seminar
Magnetic fields are challenging to localise to short length scales because their sources are electrical currents. Conversely, electric fields can be applied using electrostatic gates on scales limited only by lithography. This has important consequences for the design of spin-based information technologies: while the Zeeman interaction with a magnetic field provides a convenient tool for manipulating spins, it is difficult to achieve local control of individual spins on the length scale anticipated for useful quantum technologies. This motivates the study of electric field control of spin Hamiltonians [1]. Mn2+ defects in ZnO exhibit extremely long spin coherence times and a small axial zero-field splitting. Their environment is inversion-symmetry-broken, and the zero-field splitting shows a linear dependence on an externally-applied electric field. This control over the spin Hamiltonian offers a route to controlling the phase of superpositions of spin states using d.c. electric field pulses, and to driving spin transitions using microwave electric fields [2]. Experiments on Mn defects in ZnO provide insights into how to achieve manipulation of individual spins on surfaces using a scanning tunnelling microscope. A high-frequency voltage applied to the tip can drive electron spin resonance in Fe atoms on MgO surfaces via modulation of the crystal field experienced by the Fe atom [3]. It has been proposed theoretically that frustrated exchange-coupled molecular clusters might offer sensitivity to externally-applied electric fields [4]. Experiments on an antiferromagnetically-coupled Cu3 compound reveal a small linear electric field effect. A comparable sensitivity is exhibited by the heterometallic S = 1 antiferromagnetic ring Cr7Mn, but no effect is found for the S = 1/2 Cr7Ni [5]. [mehr]

Unconventional Charge Density Wave Transitions

MPSD Seminar
Historically charge density waves have been associated with the notions of Fermi surface nesting and, at the transition temperature, a soft phonon mode. In this talk, I will present two cases that defy this common theme. First, I will show that TiSe2 undergoes a transition due to exciton condensation, which exhibits a soft mode of a different, electronic variety. Second, when driving the system away from equilibrium, the phase transition is mediated by topological defects. These defects allow for the formation of a charge density wave that does not occur in equilibrium. This light-induced charge density wave shows some unique properties that suggest that it is not just a trivial extension of an equilibrium one. [mehr]

Shedding New Light on Dirac Materials with Nonlinear Optics

MPSD Seminar
Nonlinear optics has recently emerged as an attractive approach for both probing topological properties and driving Dirac materials into new states. Here, I will describe our use of ultrafast nonlinear optics to study three representative Dirac materials: graphene micro-ribbons, topological insulators, and Weyl semimetals. [mehr]

Quantum enhanced super-resolution microscopy

MPSD Seminar
Although the principles of quantum optics have yielded multiple ideas to surpass the classical limitations in optical microscopy, their application in life science imaging has remained extremely challenging. In this talk, I will present two works that apply measurements of photon correlations for the benefit of localization microscopy and image scanning microscopy (ISM). The first uses photon antibunching measurement to estimate the number of emitters in a fluctuating scene and can potentially speed-up super-resolution techniques based on localization microscopy [1]. In the second work, we employ photon antibunching as the imaging contrast itself. Measuring the spatial distribution of ‘missing’ photon pairs in an ISM architecture may enhance lateral resolution four time beyond the diffraction limit [2]. The robustness of the antibunching signal enabled super-resolved imaging of fixed cells, relying solely on a quantum contrast. [mehr]

Many-body dynamics in pump and probe experiments: From light amplification to terahertz STM

MPSD Seminar
I will discuss new theoretical approaches for analyzing pump and probe experiments in solid state systems. The focus will be on combining theoretical techniques from condensed matter physics and quantum optics. Several examples will be discussed, including light amplification in photo-excited superconductors and insulators, ultrafast molecular dynamics in terahertz-STM experiments. [mehr]
Zur Redakteursansicht