Archiv 2017

Raum: Seminar Room IV, O1.111 Gastgeber: Andrea Cavalleri
Coherent Multi-Dimensional Spectroscopy (CMDS) is a powerful technique that is directly sensitive to couplings between quantum states. In the optical regime, the technique is well-suited to investigate interactions between the electronic degrees of freedom in systems such as biological light-harvesting complexes and nanostructures. Following a general introduction on Multi-Dimensional Spectroscopy, I will present an ultrafast optical two-dimensional spectrometer based on a hollow-core fiber for broadband visible continuum generation and two acousto-optic pulse shapers arranged in a Mach-Zehnder interferometer for the production of fully-coherent pulse trains. The setup can easily switch between a pump-probe geometry and a collinear geometry with polarization shaping capabilities. The methodological improvements presented here represent important enabling steps towards the longstanding goal of achieving an ”Optical NMR”, and extends the realm of all-optical Multi-Dimensional Spectroscopy to spatially heterogeneous samples. The methods developed are then applied on two classes of systems. The model system Nile Blue is used to validate the performance of the instrument. The spectrometer is also used to reveal new processes in colloidal semiconductor CdSe nanocrystals. One of the most fascinating aspects of semiconductor nanocrystals is their ability to host multiple excitations per particle. When multiple excitons are created in the same nanocrystal, bound quasi-particles called multiexcitons form. In contrast to the single exciton, the structural and dynamic properties of multiexcitons remains, to this day, relatively poorly understood due to their complexity. In the last part of the seminar, I will discuss new insights gained on the structure of the ground state biexciton thanks to the optical CMDS method. [mehr]
Investigation of the ultrafast photoexcited electronic response in semiconductors has provided invaluable insights into carrier dynamics. Germanium and its alloys with Si have promise for creating multi-junction solar cells with higher efficiency and mid-infrared optoelectronics. However, the dynamics are complicated by multiple energetically similar valleys, rendering an understanding of carrier thermalization and population inversion following photoexcitation difficult. Attosecond transient absorption spectroscopy (ATAS) has recently been employed to probe ultrafast electron and hole dynamics in germanium at the M4,5-edge (~30 eV). In the experiment, a 5 fs VIS-NIR pump pulse excites carriers across the direct band gap and the dynamics are probed with a time-delayed broadband extreme ultraviolet pulse generated by high harmonic generation in xenon spanning ~20-45 eV. The observed transient absorption signal contains the energetic distribution of both carriers, electrons and holes, due to state blocking as well as spectroscopic features induced by bandshifts (e.g. due to band gap renormalization) and broadening (e.g. due to many body effects). By iterative procedures the measured signal can be successfully decoupled into these contributions resolving the carrier and band dynamics with excellent time and energy resolution. Hot carrier relaxation on a 100-fs time scale and carrier recombination on a 1-ps time scale are observed in nanocrystalline Germanium. Going from bulk semiconductor to two-dimensional layers, long-lived core-exciton states are observed at the MoN2,3 edge between 32 and 35 eV in MoS2. Comparing the XUV absorption spectra of bulk and monolayer MoS2, a ~4 eV red-shift suggests a tightly bound core-exciton. The lifetime of the core-exciton states can be directly measured in the time domain. Furthermore, transient Stark shifts, coherences, and coherent population transfer between different core-exciton states are observed. [mehr]

Paolo G. Radaelli - Lecture 8: “Physical” tensors

MPSD Seminar

Paolo G. Radaelli - Lecture 7: Tensors and tensor products of representations

MPSD Seminar

Paolo G. Radaelli - Lecture 3: Introduction to the theory of representations

MPSD Seminar

Paolo G. Radaelli - Lecture 2: Crystallographic point groups and group theory

MPSD Seminar

Paolo G. Radaelli - Lecture 1: Introduction to symmetry in CMP

MPSD Seminar

Sangwan Sim - Ultrafast optical spectroscopy of topological insulators and two-dimensional transition metal dichalcogenides

MPSD Seminar
Ultrafast optical spectroscopy of quantum materials uncovers their intrinsic physical properties such as light-matter interactions and dynamics of particles and quasi-particles. In this presentation, I will present our ultrafast optical studies of two different electronic systems: topological insulators (TIs) and two-dimensional transition metal Dichalcogenides (2D TMDs). In TIs, where Dirac-like topological surface states (TSSs) coexist with an underlying bulk insulator, we have investigated ultrafast dynamics of TSS Dirac fermions and plasmons, and their interactions with phonon by using optical-pump terahertz-probe spectroscopy. We have found that, unlike Dirac electrons in graphene, TSS Dirac electrons exhibit unique dynamic features originating from interactions with coexisting bulk insulator. In the studies of 2D TMDs, we have performed ultrafast optical pump-probe spectroscopy of anisotropic excitons in group-VII TMDs. We discuss coherent light-matter interactions such as excitonic optical Stark effect and quantum beats, both of which exhibit significant laser-polarization dependence, resulting from anisotropic nature of the excitons. [mehr]

Simon Wall - Spins, Phonons and Phase Separation in Correlated Materials

MPSD Seminar
Electrons, phonons and spins are the key ingredients that make up correlated materials and understanding how these parameters interact is vital for determining their relative interactions. In this talk I will discuss our recent experiments on how to measure these interactions on a range of time and length-scales. I will discuss demagnetization of the antiferromagnetic Mott insulator Cr2O3 as measured through second harmonic generation, in which the demagnetization pathway is dictated by phonons. Then I will discuss the insulator to metal transition in VO2, both in terms of static nano-scale measurements of phase separation measured with resonant soft X-ray holography and dynamic measurements of how the phonon degree of freedom evolves away from the zone centre using time-resolved thermal diffuse scattering. [mehr]

Eryin Wang - Novel and tailored electronic structures in 2D material heterostructures

MPSD Seminar
The big family of 2D materials provides variable and interesting stacking blocksfor constructing 2D heterostructures to achieve novel electronic propertiesdistinct from its constitute materials. So far, the 2D material heterostructureshave been an emerging research area with increasing scientific interest. In thistalk, I will present the angle-resolved photoemission spectroscopy studies ontwo novel 2D heterostructures, Bi2Se3/BSCCO [1] and graphene/h-BN [2,3]. Iwill show how the proximity effect (in Bi2Se3/BSCCO) and moire superlatticepotential (in graphene/h-BN) tune the electronic properties and further lead tothe realization of many novel quantum phenomena. The variety of 2D materialsgenerates great possibilities in 2D heterostructures which are waiting for moreresearch investigations. [mehr]

Hao Chu - Nonlinear harmonic generation and ultrafast studies of perovskite iridates

Nonlinear harmonic generation and ultrafast studies of perovskite iridates
The perovskite iridate Srn+1IrnO3n+1 realizes an interesting analogue to the cuprate high Tc superconductor. When electron-doped, the single-layer Sr2IrO4 is shown to manifest a pseudogap phase and possibly d-wave superconductivity. Using second harmonic generation rotational anisotropy, we show that near the antiferromagnetic transition there exists a magnetic multipolar order that breaks inversion symmetry in hole-doped Sr2IrO4. One candidate for this order is the loop current order that is predicted to exist in the pseudogap region of cuprate. In bilayer Sr3Ir2O7, electron-doping has been found to induce an insulator-to-metal transition in addition to a structural phase transition at low temperature. There has been no prior experimental evidence of electronic instabilities in the bilayer system. Using time-resolved optical reflectivity, we detect a charge-density-wave-like instability in metallic samples of electron-doped Sr3Ir2O7. The absence of signatures of a new spatial periodicity from diffraction, scanning tunnelling and photoemission based probes suggests an unconventional and possibly short-ranged nature of this density wave order. [mehr]

Ra’anan I. Tobey - Transient Grating Spectroscopy in Magnetic Thin Films: Elastic Excitation of a Transient Magnonic Crystal

MPSD Seminar
Control of material properties is one of the driving forces in ultrafast optical sciences. The notion that light can influence material parameters is founded on a wide range of experiments demonstrating optomagnetic control, light induced superconductivity, and the photo induced insulator to metal transition in a wide range of materials. A recent addition to the tool chest of control methodologies is the excitation of acoustic waves, and their effect on intrinsic materials properties; particularly the material magnetization via magnetostrictive effects. [mehr]
Zur Redakteursansicht