Graphen kann Laserblitze abgeben

Einzelne Kohlenstofflagen eignen sich als aktives Material für Terahertz-Laser, da sich darin eine Besetzungsinversion erzeugen lässt

Graphen gilt als Tausendsassa der Materialwissenschaft: Das zweidimensionale Bienenwabengitter aus Kohlenstoffatomen ist reißfester als Stahl und leitet Elektronen besonders schnell; dabei ist es transparent, leicht und flexibel. Kein Wunder, dass es zahlreiche Anwendungen finden soll, etwa in besonders schnellen Transistoren oder flexiblen Displays. Wie ein Team um Forscher des Hamburger Max-Planck-Instituts für Struktur und Dynamik der Materie nun gezeigt hat, erfüllt es auch eine wichtige Bedingung, um in neuartigen Lasern für langwellige Terahertz-Pulse zum Einsatz zu kommen. Bislang gibt es keine Laser, welche die für die Forschung interessante Terahertz-Strahlung direkt erzeugen. Dass das mit Graphen möglich sein könnte, deuteten zwar bereits theoretische Studien an. Es gab daran aber auch begründete Zweifel, die das Hamburger Team nun ausgeräumt hat. Die Wissenschaftler haben zugleich aber festgestellt, dass die Eisatzmöglichkeiten von Graphen auch Grenzen haben: In einer weiteren Messung zeigten sie, dass das Wundermaterial sich nicht, wie bislang angenommen, als effizienter Absorber für Solarzellen nutzen lässt.

A laser amplifies light by generating many identical copies of photons – cloning the photons, as it were. The process for doing so is called stimulated emission of radiation. A photon already produced by the laser makes electrons in the laser material (a gas or solid) jump from a higher energy state to a lower energy state, emitting a second completely identical photon. This new photon can, in turn, generate more identical photons. The result is a virtual avalanche of cloned photons. A condition for this process is that more electrons are in the higher state of energy than in the lower state of energy. In principle, every semiconductor can meet this criterion.

The state which is referred to as population inversion was produced and demonstrated in graphene by Isabella Gierz and her colleagues at the Max Planck Institute for the Structure and Dynamics of Matter, together with the Central Laser Facility in Harwell (England) and the Max Planck Institute for Solid State Research in Stuttgart. The discovery is surprising because graphene lacks a classic semiconductor property, which was long considered a prerequisite for population inversion: a so-called bandgap. The bandgap is a region of forbidden states of energy, which separates the ground state of the electrons from an excited state with higher energy. Without excess energy, the excited state above the bandgap will be nearly empty and the ground state below the bandgap almost completely populated. A population inversion can be achieved by adding excitation energy to electrons to alter their energy state to the one above the bandgap. This is how the avalanche effect described above is produced.

Until now, terahertz pulses have only been generated via inefficient non-linear optical processes

However, the forbidden band in graphene is infinitesimal. “Nevertheless, the electrons in graphene behave similarly to those of a classic semiconductor”, Isabella Gierz says. To a certain extent, graphene could be thought of as a zero-bandgap semiconductor. Because of the absence of a bandgap, the population inversion in graphene only lasts for around 100 femtoseconds, less than a trillionth of a second. “That is why graphene cannot be used for continuous lasers, but potentially for ultrashort laser pulses”, Gierz explains.

Such a graphene laser would be particularly useful for research purposes. It could be used to amplify laser light with very long wavelengths; so-called terahertz radiation. This type of laser light could be employed in basic research to study, for example, high-temperature superconductors. To date, terahertz radiation has been produced using comparatively inefficient, so-called non-linear optical processes. In addition, the available wavelength range is often limited by the non-linear material used. The recent findings indicate that graphene could be used for broad bandwidth amplification of arbitrarily long wavelengths.

However, the Hamburg-based team also dashed the hopes of some materials scientists – as it turns out, graphene is probably not suited for converting solar radiation into electricity in solar cells. “According to our measurements, a single photon in graphene cannot release several electrons, as previously expected”, Gierz says. This is a prerequisite for efficient conversion of radiation into electricity.

Silicon carbide can be used to produce graphene for lasers

The scientists in Hamburg studied the graphene using a method called time-resolved photoemission spectroscopy. This involved illuminating the material with ultrashort ultraviolet (UV) light pulses. As a consequence the electrons are forced out of the sample and the physicists measure their energy and angle of exit. The resulting data is used to establish the energy distribution of electrons in the material. Time resolution is achieved by delaying the arrival time of the UV probe pulse with respect to an arbitrary excitation pulse.

In the present experiment, the electrons in the graphene were excited using infrared laser light. Then the scientists employed photoemission spectroscopy to demonstrate the occurrence of population inversion. In a similar way, they established that carrier multiplication could not be achieved by radiation.

The graphene was produced by the scientists through thermal decomposition of silicon carbide. According to Gierz, this procedure can also be used to make a graphene laser, since silicon carbide is transparent and will not interfere with terahertz radiation. However, the physicist admits that a lot of development work remains to produce a graphene laser.

CM/PH (MPG)

Weitere interessante Beiträge

Zur Redakteursansicht