Archive 2018

Host: Angel Rubio

A time domain perspective on electron-boson coupling in superconducting materials

MPSD Seminar
Experiments in the time domain allow to determine the electron-boson coupling strength by analyzing the second moment of the Eliashberg function α2∙F(ω) using the relaxation time constant of thermalized, hot electrons after optical excitation. [1] While this approach works well for conventional superconducting materials, it is under discussion for unconventional superconductors due to competing electron and boson dynamics on similar time scales. [2,3] [more]

Nano Surface Science and Engineering for Energy Conversion and Diamond Transistors

MPSD Seminar
Nano science and technology offer a vast and fascinating playground
to explore the novel physiochemical properties of nanomaterials with the development for various applications including energy conversion and electronics. [more]

An introduction to coupled-cluster theory, and recent developments in quantum embedding

MPSD Seminar
Coupled-cluster theory has become a key tool in quantum chemistry, providing gold-standard accuracy for ground- and excited-state energetics, and other properties. [more]

Elisa Palacino Gonzalez - Molecular Photodynamics of Open Quantum Systems. Simulation of Nonlinear Optical Spectroscopies using Nonperturbative Approaches

MPSD Seminar
The theoretical description of nonlinear optical spectroscopy has traditionally been laid in the framework of perturbation theory. Within this formalism, an intuitive approach to the understanding of the dynamics of a molecular system excited by several external laser pulses is based on the concept of nonlinear response functions. However, as the system complexity increases or nontrivial dynamic effects have to be taken into account (nonadiabatic interstate couplings, bath-induced relaxation) the perturbative approach becomes computationally expensive. To tackle this scenario nonperturbative approaches based on the numerically exact solution of quantum equations of motions have been developed. [more]

Michael Bonitz - Femtosecond electron dynamics in strongly correlated finite systems

MPSD Seminar

Quantum control and dynamics with x-rays

MPSD Seminar
More than fifty years ago, it was the invention of the laser that revolutionized atomic physics and laid the foundations for quantum optics and coherent control. With only optical frequencies available, the interaction of coherent light with matter was for a long time mainly restricted to atomic transitions. Only recently have novelhigh-frequency light sources rendered x-ray quantum optics possible. In this higher frequency regime, atomic nuclei rise as natural candidates for the interaction with coherent light creating a new bridge between atomic physics, quantum optics and nuclear condensed matter physics. Nuclei are very clean quantum systems, well isolated from the environment and benefiting from long coherence times. Combining the advantages of x-rays and nuclei, a prominent incentive is to exploit x-rays as the future quantum information carriers or for novel probing technologies based on quantum effects. Furthermore, the control of nuclear transitions would open the possibility to use long-lived nuclear excited states as a compact and clean energy storage solution. The lecture will follow the developments on the emerging field of x-ray quantum optics and focus on the mutual control of coherent x-ray radiation and nuclear transitions in this new regime of laser-matter interactions. [more]

Resonant Thermalization of periodically driven strongly correlated electrons

MPSD Seminar

Orbital-dependent improvements to density-functional approximations: Application of the FLO-SIC method

MPSD Seminar

Sub-optical-cycle control of light and matter

MPSD Seminar

Slow-Electrons Interacting with Light and Matter

MPSD Seminar

Numerically exact full counting statistics of the Anderson impurity model

MPSD Seminar
The full characterization of charge transfer processes in molecular junctions requires techniques for evaluating not only the first and second moments of charge currents, but also higher-order statistical cumulants of the charge transfer process. The complete set of cumulants gives access to the full counting statistics (FCS) through the so-called generating function [1]. [more]

Polariton photophysics and photochemistry: theoretical perspectives

CFEL Theory Seminar
Organic molecules interact strongly with confined electromagnetic fields in plasmonicarrays or optical microcavities owing to their bright transition dipole moments. Thisinteraction gives rise to molecular polaritons, hybrid light-matter quasiparticles.Molecular polaritonics opens new room-temperature opportunities for the nontrivialcontrol of energy transport in the nano and mesoscales and modification of physicochemicalproperties of molecular assemblies. In this talk, I’ll showcase some of theseopportunities that we have been theoretically exploring in the past few years within thecontext of physical chemistry. I’ll start by briefly mentioning our work on topologicallynontrivial phases in excitonic and polaritonic systems of organic dye molecules [1,2].Next, I will discuss recent work on how polaritons can enhance singlet-fissionprocesses [3] or how excitation energy can be transferred across mesoscopicdistances of hundreds of nanometers to micron lengthscales [4]. If time permits, I’llconclude by explaining what we can learn about molecular polaritons using twodimensionalspectroscopy [5,6].[1] J. Yuen-Zhou et al., Nature Mater. 13, 1026 (2014).[2] J. Yuen-Zhou et al., Plexcitons: Dirac points andtopological modes, Nat. Commun. 7, 11783 (2016).[3] L. A. Martínez-Martínez, et al., Polariton-assistedsinglet fission in acene aggregates, under review in J.Phys. Chem. Lett., arXiV:1711.11264.[4] M. Du et al., Polariton-assisted remote energy transfer(PARET), under review in Chem. Sci., arXiv:1711.11576.[5] B. Xiang et al., Revealing hidden vibration polaritoninteractions by 2D IR spectroscopy, under review in Proc.Nat. Acad. Sci., arXiv:1711.11222.[6] R. F. Ribeiro et al., Theory for nonlinear spectroscopyof vibrational polaritons, submitted to J. Phys. Chem.Lett., arXiv:1711.11576. [more]

Emanuele Dalla Torre - From Floquet engineering to prethermalization of peridically driven systems

MPSD Seminar

Takashi Oka - Applied Floquet engineering

MPSD Seminar
  • Date: Jan 16, 2018
  • Time: 11:00 AM - 12:00 PM (Local Time Germany)
  • Speaker: Takashi Oka
  • Max Planck institute for the physics of complex systems, Dresden, Germany Max Planck institute for Chemical Physics of Solids, Dresden, Germany
  • Location: CFEL (Bldg. 99)
  • Room: Seminar Room III, EG.080
  • Host: Angel Rubio

Mitsuharo Uemoto - TDDFT+Maxwell multiscale method for lightpropagation calculation in semiconducting media

MPSD Seminar
Go to Editor View