Archive 2019

Host: Andrea Cavalleri Location: CFEL (Bldg. 99)

Electronic dynamics of strange metals

MPSD Seminar
The normal state of unconventional superconductors often exhibits anomalous transport properties and it is commonly referred to as a “bad” or “strange” metal. Understanding its collective charge dynamics, which defies the standard quasiparticle description of a Fermi liquid, is an outstanding challenge of modern condensed matter physics.In this talk, I will present a direct measurement of the collective charge dynamics of the strange metal using inelastic electron scattering. First, I will discuss how normal-state Bi2Sr2CaCu2O8+d is defined by a featureless, localized continuum, undergoing a low-temperature massive spectral weight redistribution. I will then describe how such a phase is found to coexist with a low-energy Fermi liquid in Sr2RuO4.These results indicate that strange metals are highly localized in space and dissipate on ultrafast timescales, seemingly bound only by quantum limits. Implications for the occurrence of high-temperature superconductivity will be discussed. [more]

Aqueous Nanoscale Systems

MPSD Seminar
  • Date: Nov 7, 2019
  • Time: 03:00 PM - 04:00 PM (Local Time Germany)
  • Speaker: Sylvie Roke
  • Laboratory for fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH 1015 Lausanne, Switzerland
  • Location: CFEL (Bldg. 99)
  • Room: Seminar Room III, EG.080
  • Host: Andrea Cavalleri
Water is the most important liquid for life. It is intimately linked to our well-being. Without water, cell membranes cannot function. Charges and charged groups cannot be dissolved, self-assembly cannot occur, and proteins cannot fold. Apart from the intimate link with life, water also shapes the earth and our climate. Our landscape is formed by slow eroding/dissolving processes of rocks in river and sea water; aerosols and rain drops provide a means of transport of water. Because of the complexity of liquid water and aqueous interfaces, the relationship between the unique properties of water and its molecular structure has not been solved. [more]

Growth Dynamics of Graphene on molten copper

MPSD Seminar
Since it’s discovery in 2006, Graphene has known no rivals in terms of number of applications that scientists from all over the globe have thought for him, ranging from spintronics to energy storage, from transistors to bio-compatible devices. However, what’s still hindering his big step from laboratories to industry is a cost-effective method to synthesize large-scale good-quality crystals. Over the past decade, great improvements have been made in this direction, and CVD consolidated as an excellent candidate for this arduous task. Among other methods, a novel technique consisting in the synthesis of crystals on transition metals in the liquid phase has proven to overcome many difficulties related to defect-inducing dislocations and low-diffusivity of solid substrates. Nevertheless, a clear physical insight over the processes involved during graphene nucleation and growth is still lacking, and many of its parameters are derived by post-process analyses, neglecting those crucial intermediate steps that may conceal key-factors involved in the process. The reason for this trend is that it’s technically difficult to combine different experimental set-ups, and an ad-hoc design is more than ever needed to conduct a complete and satisfying investigation. This is the reason behind the LMCat project, that developed a reactor suitable both for CVD growth at high temperature by hydrocarbon decomposition and for in-situ Raman and optical studies, in order to follow in real time the growth of graphene flakes and, at the same time, determine its physical properties. Additionally, it aims to prove X-ray techniques, such as GID and XRR, as an efficient tool for high temperature characterization, a feat never achieved before. This is the framework of this thesis work, which can of course cover it only partially and at a rather early stage. The focus has been put on the surprising high contrast showed by radiative optical microscopy at high temperatures (∼ 1100 C°) and on the first, surprising results coming from X-ray analysis. The former has been proven as an effective tool for following the growth and derive kinematical parameters, the latter as a potential tool for quantitatively estimate its crystal structure at conditions prohibitive for standard probes. [more]

Ultrafast single-molecule videography and choreography

MPSD Seminar
To understand the function of condensed matter, it would be desirable to directly watch its atomistic building blocks dynamically interact on their intrinsic length and time scales. Recently, lightwave electronics has made this long-standing dream come true. The idea is to exploit the carrier wave of light as an ultrafast, contact-free bias to interrogate and control the nanocosm. I will first review how lightwaves can drive electrons in solids into surprising sub-cycle quantum motion. By combining this idea with the sub-angstrom spatial resolution of scanning tunnelling microscopy we can set an ultrashort time window for single-electron tunnelling into a single orbital and record first atom-scale slow-motion movies of individual vibrating molecules. Finally, I will show how to directly exert femtosecond atomic forces, which can selectively choreograph a coherent structural motion of a single-molecule switch in its electronic ground state. This stunningly direct access to the atomistic world may tailor key elementary dynamics in nature and steer (bio)chemical reactions or ultrafast phase transitions, on their intrinsic spatio-temporal scales. [more]
Go to Editor View