Host: IMPRS-UFAST

Getting tasks done

IMPRS-UFAST skills course
A PhD is a marathon not a sprint. The sheer number of different tasks that need to be done can sometimes be overwhelming. Being able to set goals, prioritise tasks and remain motivated are skills essential for the progression and achievement of your PhD. [more]

The theory of electronic structure and molecular dynamics

IMPRS-UFAST core course
The course provides an overview of molecular electronic structure theory, covering the Hartree-Fock method, many-body perturbation theory, multiconfiguration self-consistent field, configuration interaction, coupled cluster, and density functional theory. Also it will discuss how to treat the interaction of molecules with electromagnetic fields. After this, it will cover the basics of molecular dynamics. [more]

Source technology

IMPRS-UFAST core course
The course provides an overview of the working principles of modern light/ X-ray/electron sources, including the respective physics background and their currentstrengths and limitations. The focus will be on techniques and technical basics. [more]

Introduction to C++ for PhD students

IMPRS-UFAST skills course
In this C++ introductory course, you will completely learn the basic C++ syntaxes and will become familiar with object-oriented programming.As the course is going to be project-oriented, we will start by a physical problem from the beginning of the class and you will be instructed to implement a code to solve the problem during the course. [more]

Ultrafast techniques

IMPRS-UFAST core course
The course focuses on the use of modern light/ X-ray/ electron sources for investigating the physics/ chemistry/ biology phenomena. We will discuss scattering and image reconstruction techniques, spectroscopy and their use for time-resolved measurements . Key questions addressed are which techniques exist, how to use them, and which method is best used to reach a certain goal. [more]

IMPRS-UFAST Ph.D. Seminar

IMPRS-UFAST Ph.D. Seminar

Solid State Physics

IMPRS-UFAST core course
From a microscopic point of view, a solid is just a regular arrangement of atoms, embedded in a soup of electrons. Yet, a remarkably rich manifold of phenomena emerges from this simple starting point, ranging from simple metals and semiconductors to multiple kinds of magnetic order or superconductivity. In this course we will discuss basic properties of solids and their microscopic understanding. [more]

Intermediate C++ for PhD students - IMPRS-UFAST skills course

IMPRS-UFAST skills course
The ideal programming language for a physicist would allow him to write his code in terms of physical objects, like Hamiltonians and wave functions, with all the properties we expect of such objects, without sacrificing performance to highly optimised codes. [more]

Science Slam Workshop (IMPRS-UFAST skills)

IMPRS-UFAST skills course
You are proud of what you’re working on and want to know how to explain your research and promote yourself in an exciting way? Then this workshop is the right fit for you! In this Science Slam workshop you will learn to identify what makes you and your work fascinating. Find your personal style to blow your audience’s mind! [more]

Intermolecular interactions - IMPRS-UFAST focus course

IMPRS-UFAST focus course
Within this focus course, we will study the basics of intermolecular interactions. These include molecular properties such as polarizabilities, to learn about the behavior of molecules in external fields, as well as the treatment of thermodynamic and statistical effects. [more]

Moderation training

IMPRS-UFAST skills course
Learn powerful and effective methods for conducting all types of meeting from an experienced expert. [more]

Basics of chemistry and biochemistry - IMPRS-UFAST core course

IMPRS-UFAST core course
In this course, chemistry will mainly be understood as reactions. The course gives an overview about the basics of reaction chemistry and discuss what is already known and what can be measured in the laboratory nowadays (i.e. describing the current frontiers and where the research performed at CFEL can make a difference). In the biochemistry part, the basic principles of nucleic acids (DNA, RNA, their replication etc.) and proteins, their structure and function etc. will be discussed. It will be interesting to work out where the new coherent sources can advance the field. [more]

IMPRS-UFAST Ph.D. Seminar

IMPRS-UFAST Ph.D. Seminar

Superconductivity - IMPRS-UFAST focus course

IMPRS-UFAST focus course
This course covers the basic phenomenology and microscopic theory of superconductivity: - definition of superconductors and their thermodynamics - microscopic BCS theory: electron-phonon interaction, Fröhlich Hamiltonian, Cooper instability, mean-field theory, Bogoliubons [more]

Topological band theory - IMPRS-UFAST focus course

IMPRS-UFAST focus course
This course covers basic concepts in the topological classification of band structures of solids, the development of which led to the Physics Nobel Prize in 2016 for Thouless, Kosterlitz and Haldane. [more]

Ultrafast techniques

IMPRS-UFAST core course
The course focuses on the use of modern light/ X-ray/ electron sources for investigating the physics/ chemistry/ biology phenomena. We will discuss scattering and image reconstruction techniques, spectroscopy and their use for time-resolved measurements . Key questions addressed are which techniques exist, how to use them, and which method is best used to reach a certain goal. [more]

Non-linear optics - IMPRS-UFAST core course

IMPRS-UFAST core course
The course provides an overview of the working principles of nonlinear optics with a focus on the basic physical concepts. [more]

The theory of electronic structure and molecular dynamics

IMPRS-UFAST core course
The course provides an overview of molecular electronic structure theory, covering the Hartree-Fock method, many-body perturbation theory, multiconfiguration self-consistent field, configuration interaction, coupled cluster, and density functional theory. Also it will discuss how to treat the interaction of molecules with electromagnetic fields. After this, it will cover the basics of molecular dynamics. [more]

Brief overview of Quantum Dissipative Systems: techniques and applications

IMPRS-UFAST focus course
This course covers an operational introduction to the dissipative quantum systems. Starting with a descriptive introduction we will introduce four essential techniques: I.Liouville Equation II.Generalized Master Equation III.Lindblad Equation and IV.Equations of motion approach, each of them will be illustrated with the help of following examples: driven quantum dot/ phonon which is an essential prototype for condensed matter systems and Jaynes Cummings model borrowed from quantum optics literature. Measurable observables relevant to experiments will be discussed. [more]

Basics of chemistry and biochemistry - IMPRS-UFAST core course

IMPRS-UFAST core course
  • Start: Nov 6, 2018 10:00
  • End: Nov 15, 2018 13:30
  • Speaker: Melanie Schnell, Marta San Valls and Sam Horrell
  • In this course, chemistry will mainly be understood as reactions. The course gives an overview about the basics of reaction chemistry and discuss what is already known and what can be measured in the laboratory nowadays (i.e. describing the current frontiers and where the research performed at CFEL can make a difference). In the biochemistry part, the basic principles of nucleic acids (DNA, RNA, their replication etc.) and proteins, their structure and function etc. will be discussed. It will be interesting to work out where the new coherent sources can advance the field.
  • Location: CFEL (Bldg. 99)
  • Room: Seminar Room O1.060
  • Host: IMPRS-UFAST

Photoinduced Energy and Electron Transfer in the Natural and Artificial Systems

IMPRS-UFAST focus course
One of the most active areas of research is to assemble rationally tailored components at molecular level, which can capture the sunlight energy and transfer it in the desired directions. Biological protein systems, such as the antenna complexes, transfer the absorbed solar energy with unit efficiency into the reaction center, where the charge separation directs the water splitting. This course will provide an introduction to the processes of energy and electron transfer with the help of examples from natural photosynthetic complexes and organic photovoltaics. [more]

Hubbard Model

IMPRS-UFAST focus course
The Hubbard model is the drosophila of condensed matter physics. It is perhaps the simplest possible model capturing the competition between localization of electrons in solids due to Coulomb repulsion and delocalization in energy bands due to kinetic energy lowering. Invented in the early 1960s to descibe magnetism in transition-metal monoxides, it has been generalized and applied to a host of problems in condensed matter including heavy fermions or high-temperature superconductors. Despite its apparent simplicity it shows complicated phase diagrams that depend on dimensionality and lattice coordination as well as electronic filling, with only few exact solutions in limiting cases known to this date. [more]

Non-linear optics

IMPRS-UFAST core course: Non-linear optics
Nonlinear optics (NLO) is one of the most fascinating fields of modern physics. It deals with light-matter interactions at extreme electro-magnetic field strengths. Such fields are today routinely available thanks to laser technology. NLO started with the observation of second harmonic generation from a ruby laser in 1961, just 1 year after the first laser was operated. It allows producing optical pulses with durations in the femtosecond (fs, 10-15 s) and even attosecond (as, 10-18 s) order. With such sources, one can observe chemical reactions, physical and biological phenomena in real time. During the lectures, I will give a short overview of NLO. I will discuss the main physical phenomena (second harmonic generation, optical parametric amplification, difference and sum frequency generation, white light generation, third harmonic generation, high harmonic generation…) and some of their applications, and conclude with the newest trends of research like coherent pulse synthesis. [more]
Strong electronic correlations are a main driver behind many exciting phenomena in quantum many-body systems, ranging from correlated quantum materials (Mott transition, high-temperature superconductivity) to cold atoms in optical lattices. However, the strong-correlation problem still poses many challenges when it comes to a quantitative and even qualitative understanding of the relevant degrees of freedom and microscopic interactions that drive phase transitions in solids. Dynamical mean-field theory (DMFT), first developed in the late 1980s and 1990s, provides one key limit in which the correlation problem becomes tractable, namely the one of large spatial dimensions, or local self-energies. In this focus course we will discuss the basics behind DMFT and learn how this allows one to understand the paradigmatic Mott metal-to-insulator transition. [more]

Non-linear Optics (IMPRS-UFAST Core Course)

IMPRS-UFAST core course
Nonlinear optics (NLO) is one of the most fascinating fields of modern physics. It deals with light-matter interactions at extreme electro-magnetic field strengths. Such fields are today routinely available thanks to laser technology. NLO started with the observation of second harmonic generation from a ruby laser in 1961, just 1 year after the first laser was operated. It allows producing optical pulses with durations in the femtosecond (fs, 10-15 s) and even attosecond (as, 10-18 s) order. With such sources, one can observe chemical reactions, physical and biological phenomena in real time. During the lectures, I will give a short overview of NLO. I will discuss the main physical phenomena (second harmonic generation, optical parametric amplification, difference and sum frequency generation, white light generation, third harmonic generation, high harmonic generation…) and some of their applications, and conclude with the newest trends of research like coherent pulse synthesis. [more]

Presentation Skills (IMPRS-UFAST Skills Course)

IMPRS-UFAST skills course
“Poets are born – speakers are made” Public speaking is a necessity in scientific life. Take part in this two-days course, find out what your strengths are and develop your individual presentation profile. Take steps to learn how to lead the audience from your first appearance on stage until the last question in the discussion. Be authentic, enthusiastic and convincing! [more]
Go to Editor View