IMPRS Course Archive 2018

Location: CFEL (Bldg. 99)

Non-linear optics

IMPRS-UFAST core course: Non-linear optics
Nonlinear optics (NLO) is one of the most fascinating fields of modern physics. It deals with light-matter interactions at extreme electro-magnetic field strengths. Such fields are today routinely available thanks to laser technology. NLO started with the observation of second harmonic generation from a ruby laser in 1961, just 1 year after the first laser was operated. It allows producing optical pulses with durations in the femtosecond (fs, 10-15 s) and even attosecond (as, 10-18 s) order. With such sources, one can observe chemical reactions, physical and biological phenomena in real time. During the lectures, I will give a short overview of NLO. I will discuss the main physical phenomena (second harmonic generation, optical parametric amplification, difference and sum frequency generation, white light generation, third harmonic generation, high harmonic generation…) and some of their applications, and conclude with the newest trends of research like coherent pulse synthesis. [more]

Hubbard Model

IMPRS-UFAST focus course
The Hubbard model is the drosophila of condensed matter physics. It is perhaps the simplest possible model capturing the competition between localization of electrons in solids due to Coulomb repulsion and delocalization in energy bands due to kinetic energy lowering. Invented in the early 1960s to descibe magnetism in transition-metal monoxides, it has been generalized and applied to a host of problems in condensed matter including heavy fermions or high-temperature superconductors. Despite its apparent simplicity it shows complicated phase diagrams that depend on dimensionality and lattice coordination as well as electronic filling, with only few exact solutions in limiting cases known to this date. [more]

Photoinduced Energy and Electron Transfer in the Natural and Artificial Systems

IMPRS-UFAST focus course
One of the most active areas of research is to assemble rationally tailored components at molecular level, which can capture the sunlight energy and transfer it in the desired directions. Biological protein systems, such as the antenna complexes, transfer the absorbed solar energy with unit efficiency into the reaction center, where the charge separation directs the water splitting. This course will provide an introduction to the processes of energy and electron transfer with the help of examples from natural photosynthetic complexes and organic photovoltaics. [more]

Basics of chemistry and biochemistry - IMPRS-UFAST core course

IMPRS-UFAST core course
  • Start: Nov 6, 2018 10:00
  • End: Nov 15, 2018 13:30
  • Speaker: Melanie Schnell, Marta San Valls and Sam Horrell
  • In this course, chemistry will mainly be understood as reactions. The course gives an overview about the basics of reaction chemistry and discuss what is already known and what can be measured in the laboratory nowadays (i.e. describing the current frontiers and where the research performed at CFEL can make a difference). In the biochemistry part, the basic principles of nucleic acids (DNA, RNA, their replication etc.) and proteins, their structure and function etc. will be discussed. It will be interesting to work out where the new coherent sources can advance the field.
  • Location: CFEL (Bldg. 99)
  • Room: Seminar Room O1.060

Brief overview of Quantum Dissipative Systems: techniques and applications

IMPRS-UFAST focus course
This course covers an operational introduction to the dissipative quantum systems. Starting with a descriptive introduction we will introduce four essential techniques: I.Liouville Equation II.Generalized Master Equation III.Lindblad Equation and IV.Equations of motion approach, each of them will be illustrated with the help of following examples: driven quantum dot/ phonon which is an essential prototype for condensed matter systems and Jaynes Cummings model borrowed from quantum optics literature. Measurable observables relevant to experiments will be discussed. [more]

The theory of electronic structure and molecular dynamics

IMPRS-UFAST core course
The course provides an overview of molecular electronic structure theory, covering the Hartree-Fock method, many-body perturbation theory, multiconfiguration self-consistent field, configuration interaction, coupled cluster, and density functional theory. Also it will discuss how to treat the interaction of molecules with electromagnetic fields. After this, it will cover the basics of molecular dynamics. [more]

Non-linear optics - IMPRS-UFAST core course

IMPRS-UFAST core course
The course provides an overview of the working principles of nonlinear optics with a focus on the basic physical concepts. [more]

Ultrafast techniques

IMPRS-UFAST core course
The course focuses on the use of modern light/ X-ray/ electron sources for investigating the physics/ chemistry/ biology phenomena. We will discuss scattering and image reconstruction techniques, spectroscopy and their use for time-resolved measurements . Key questions addressed are which techniques exist, how to use them, and which method is best used to reach a certain goal. [more]
In public, "good scientific practice" is often connected with cases of plagiarism when it comes to dissertations. However, the important topic covers a substatially wider spectrum of scientific conduct: Dealing with data (including checking, recording, ownership and storage), the publishing process and authorship, responsible supervision, academic cooperation, conflicts of interest and dealing with conflicts. Inappropriate academic behaviour includes inventing or faking data, violating intellectual property (theft of ideas or plagiarism) and sabotating the research of others. More subtle topics, such as skepticism, critical thinking, reproducibility, handling creativity, the danger of axiomatic assumptions and confirmation bias represent the "heart of good scientific practice". Every PhD student should have a professional understanding of all mentioned topics. [more]
Thinking about your career after the PhD? Three half-days of explorations and personal encounters with visits to leaders from different sectors of work in Hamburg. This workshop will broaden your perspective - on what you have to offer and where you might go. [more]

Topological band theory - IMPRS-UFAST focus course

IMPRS-UFAST focus course
This course covers basic concepts in the topological classification of band structures of solids, the development of which led to the Physics Nobel Prize in 2016 for Thouless, Kosterlitz and Haldane. [more]



IMPRS Job Seminar

IMPRS-UFAST skills course
You are not sure yet what to do after your PhD? You want to know what kind of jobs are out there in the real world? You wonder what makes you interesting for industry? Then this seminar is the right fit for you!In this seminar you have the chance to quiz interesting people from outside of academia. Find your dream job! Or at least know where to look for it. [more]
Go to Editor View